Sine Wave Energy Feedback Device User Manual

Nietz Electric Co.,Ltd

CONTENT

PREFACE	2
STATEMENT	2
CHAPTER 1 SAFETY INFORMATION	3
1.1 SAFE DEFINITION	
1.2 INSTALLATION AND WIRING CONSIDERATIONS	.3
1.3 PRECAUTIONS FOR USE	4
1.4 OTHERS	4
CHAPTER 2 UNPACKING ACCEPTANCE NOTES 7	4
2.1 UNPACKING APPEARANCE ACCEPTANCE	4
2.2 PRODUCT ACCEPTANCE	4
CHAPTER 3 MODELS AND SPECIFICATIONS	5
3.1 NAMING RULES	5
3.2 TECHNICAL SPECIFICATIONS	5
3.3 PRODUCT SELECTION INSTRUCTIONS	6
3.4 PRODUCT DIMENSIONS AND INSTALLATION DIMENSIONS	=
CHAPTER 4 INSTALLATION GUIDE	15
4.1 MAIN CIRCUIT WIRING	15
4.2 CONTROL LOOP WIRING	17
4.3 WIRING CABLE DESCRIPTION	19
4.4 INSTALLATION SPACE REQUIREMENTS	21
CHAPTER 5 PARAMETER SETTINGS	23
5.1 KEYBOARD CONTROL INSTRUCTIONS	23
5.2 COMMON CONTROL PARAMETER SETTINGS	
5.3 RS485 COMMUNICATION	47
CHAPTER 6 TROUBLESHOOTING	67
6.1 KEYBOARD CONTROL FAULT CODE	
6.2 ANALYSIS AND ELIMINATION OF COMMON ERROR CAUSES	68
CHAPTER 7 MAINTENANCE AND INSPECTION	.69
7.1 DAILY INSPECTION	69
7.2 PERIODIC INSPECTION	69
CHAPTER 8 PRODUCT ADVISORY AND QUALITY ASSURANCE	72
8.1 REQUEST FOR CONSULTATION	72
8.2 PRODUCT QUALITY ASSURANCE	72

Preface

Thank you for purchase and use the NZR sine wave energy feedback device produced by Nietz Electric Co.,Ltd . The NZR sine wave energy feedback device is a low-noise energy-saving product manufactured by Canadian technology, using advanced algorithms to achieve complete sine wave energy feedback. NZR can feed back the regenerative electric energy generated in the motor speed regulation process to the power grid, thereby avoiding the energy loss caused by the conventional energy consumption type braking unit, thereby achieve the energy saving effect.

The NZR sine wave energy feedback device contains a reactor and a noise filter, which can be directly connected to the power grid without causing interference to the power grid or surrounding electrical equipment. This manual provides some precautions for product installation wiring and routine maintenance. To ensure proper installation and operation of this product, please read this manual carefully before install the machine. This manual is included in the packing accessories, please hand it to the end user of this product and keep it in a safe place.

Statement

Nietz Electric Co.,Ltd reserves the right to change functions, technical data, standards and parameters. Reproduction or reproduction of part or all of this manual without the written permission of the company is prohibited.

In order to align the contents of the manual with the product hardware and software, we have carefully reviewed and verified the manual, but we do not rule out the possibility of deviation, so we do not guarantee the content and hardware and software described in the manual (printed Version)It is exactly the same. The data in the manual is tested according to the prescribed procedures, and the necessary changes (corrections) will be listed in new version. Please indicate the inadequacy of the contents of the manual.

Nietz Electric Co., Ltd all rights reserved.

Chapter 1 Safety Information

1.1 Safety Definition

A Danger	Incorrect use can cause dangerous situations, cause personal injury or serious property damage.
Warning	Incorrect use may result in a dangerous situation, cause minor or moderate personal injury, damage to the device or the device may not work properly.
Note	In order to get a better performance, give some tips.

Chart 1-1 Safe Definition

1.2 Installation and wiring considerations

A Danger	 Wiring work must be carried out by qualified person, otherwise there is a risk of electric shock or machine damage due to incorrect wiring. When installing and wiring, the device and other inverters connected to it must be powered off, and wait for 5 to 10 minutes to confirm that the stored capacity of the internal capacitors of each related device is discharged and then operate. To ensure personal safety. The grounding terminal of the device must be grounded reliably, otherwise there is a danger of electric shock.
Warning	 The three-phase output terminal of the device and the DC bus voltage input terminal must be correctly distinguished and wired correctly. Otherwise, it will not work, or even damage the device itself and related devices, and there is a fire hazard. Install the unit in a well ventilated area, otherwise the unit may be overheated and damaged.

1.3 Precautions for use

A Danger	After power-on, the internal parts of the device are exposed to dangerous high voltage. Non-professionals should not touch the internal parts of the machine at will, otherwise there may be danger of electric shock.
Warning	Do not drop metal objects such as screws and gaskets into the unit. Otherwise, there is a danger of damage to the unit. Make sure the cover of the chassis is closed during use.

1.4 Others

	1.Product scrapping should be treated according to industrial waste. It is strictly forbidden to
	burn, otherwise there is danger of explosion.
Warning	
	2.Do not install NZR sine wave energy feedback devices with damaged or missing components,
	otherwise there is a danger of damage to the machine or personal safety.

Chapter 2 Precautions for Unpacking Acceptance

2.1 Unpacking appearance acceptance

The NZR sine wave energy feedback device produced by Nietz Electric Co.,Ltd has passed strict testing and quality inspection before leaving the factory. Before unpacking, please check carefully whether the product packaging is damaged due to inadvertent transportation, check for damage caused by transportation, fall off and the front cover or body recessed. If any of the above problems exist, please contact with us or your supplier in time.

2.2 Product acceptance

After opening the package, please confirm the following items:

1. Confirm that the model number on the product label is the product model you ordered;

2. Check if there is damage to the parts caused by transportation, fall off and the front cover or body recessed.

Item Number	Operation Voltage		Fit for asynchronous motor power
NZR-04-T-CS	280Vac~480)Vac	5.5KW~7.5KW
		For more product in Specifications.	formation, please refer to Chapter 3 Models and

Chart 2-1 Product information description

1. Do not install NZR sine wave energy feedback device with damaged or missing parts. Otherwise,
there will be danger of power failure or personal safety.
2. If there is any packaging damage or product problem, please contact with us or supplier in time.

Chapter 3 Models and Specifications

3.1 Naming rules

The NZR avoids wasted energy by delivering it back to your power source for use by other loads. It has easy to setup and install, safe to use, parallel usage of multiple units, realize complete current sharing. It is mainly applied in cases where rapid DEC, positioning and brake is needed eg mine hoist, elevator, textile machine, paper-making machinery, centrifugal machine, washing machine, drawbench, proportional action and crown block.

	NZR	-04 -T -C S				
	1	2 3 4 5				
1 Series	NZR	Sine wave Regener	rative Brak	king Unit		
	2	190Vac~250V	/ac			
② Power Supply	4	280Vac~480V	/ac			
	6	530Vac~790	/ac			
	Т	5.5~7.5KW	1			
	S	11~15KW				
	М	18.5~22KV	V			
	L	30~37KW				
	Х	45KW				
③ Paower range	55	55KW	75	75KW		
S Fauwei Tange	90	90KW	110	110KW		
	132	132KW	160	160KW		
	185	185KW	220	220KW		
	250	250KW	280	280KW		
	315	315KW	355	355KW		
④ Control type	С	Digital control				
	S	Stan	dard			
⑤ Load feature	Н	Heavy duty				
	С	Persistent				

3.2 Technical specifications

Item		Specification		
Voltage		3 phase 190Vac~250Vac; 280Vac~480Vac; 530Vac~790Vac		
Power supply	Frequency	40Hz~70Hz		
	Current control	Space vector control, current & voltage THD<5% @ 100% load		
Control	Output control	Intelligent predictive control of DC bus voltage		
	Rectifier	330Vdc (220Vac class) ±150Vdc Adjustable; 600Vdc (380Vac		
Control	feedback/Feedback action	class) ±200Vdc adjustable; 1000Vdc (660Vac class) ±200Vdc		
	voltage	adjustable		
	Fan control	43° C turn on, 40° C turn off or programmable control mode		

	Protection	Overcurrent, overload, current limit, DC short circuit, DC overvoltage, DC undervoltage, overheat, grid amplitude fault, grid frequency fault, grid phase fault, AC short circuit, external EXT Terminal input fault protection, etc.		
Display	Mode indication Power supply, monitoring, enable operation, fault, paramete Mode indication modification, rectification feedback / feedback status indication keyboard data display, etc.			
	Installation site	In the cabinet, the altitude is not more than 1000m (for every 1000m of altitude, it must be derated by 10%), no direct sunlight, no conductive dust and corrosive gas		
Installation	Ambient temperature	-10 ~ 40 $^{\circ}$ C, good ventilation		
Installation conditions	environment humidity	90% RH or less (no condensation)		
contaitions	Vibration	0.5g or less		
	Air environment	None dust, direct sunlight, corrosive gas, flammable gas, oil mist, steam, water, etc., do not contain too much salt		
	Installation method	Wall-mounted, IP20		
	Ambient temperature	-40~70℃		
Storage	environment humidity	5~95%RH		
environment	Air environment	No dust, direct sunlight, corrosive gas, flammable gas, oil mist, steam, water, etc., do not contain too much salt		

Chart 3-2 Product specifications

3.3 Product selection instructions

* The adaptive motor power is calculated based on the grid voltage level as the benchmark, without the need to enlarge or reduce the capacity. In the occasions where the power generation efficiency of the motor is relatively high, the power level needs to be enlarged by one gear when selecting the model.

* When it is applied to permanent magnet synchronous motor(the power generation efficiency of permanent magnet synchronous motor with the same power is one level higher than that of asynchronous motor), the power level needs to be enlarged by one gear when selecting the model.

* Standard type (S series), braking torque is 110%, suitable for: centrifuge, lathe, textile machine, printing machine, sugar separation machine, industrial dehydrator, packaging machine, kowtow machine, pumping unit, rewind Machine, paper machine, spindle, gantry planer, etc. If you are unsure of your choice, please choose the heavy duty (H series) NZR sine wave energy feedback device. In the case of motor emergency stop braking (where the motor stops from high speed or heavy load braking, the motor emergency stop braking time is less than 8 seconds), the power level needs to be enlarged by one gear when selecting the model.

* Heavy-duty type (H series), braking torque is 150%, suitable for: crane, hoist, elevator, tower crane, winch, cable car, port door machine, coal shearer, down belt conveyor, winch, steel rolling machine, driving, Crane, crane, uncoiling and winding, wire drawing machine, wire drawing machine, monkey car, reel, ship lock, etc.

* Continuous type (C series), braking torque is 220%, suitable for continuous uninterrupted feedback occasions, commonly used for dynamometer and generator grid-connected feedback.

* 25% DTC rated current refers to the rated current of the machine's feedback work in 1/4 working system. That is:

in a 2min (min is minutes) period, the feedback continues to work for 0.5min and stops for 1.5min.

* 50% DTC rated current refers to the rated current for the machine's feedback work in 1/2 working system. That is: in the 2min (min is minutes) period, the feedback continues to work for 1min and stops for 1min.

* 100% DTC rated current refers to the rated current of the machine's feedback work during continuous uninterrupted operation.

* Peak current can work continuously for 3s (s is seconds).

Standard load Version – Selection Table

		Adapted motor power (KW)		25% DTC	Peak	
S version	Voltage	Asynchronous	Synchronous	rated	current	Shell
		-	-	current	Carronic	
NZR-06-045-CS		45	37	36A	45A	C3
NZR-06-055-CS		55	45	44A	55A	C3
NZR-06-075-CS		75	55	60A	75A	C3
NZR-06-090-CS		90	75	85A	110A	C4
NZR-06-110-CS		110	90	105A	132A	C4
NZR-06-132-CS		132	110	125A	160A	C4
NZR-06-160-CS	660Vac	160	132	145A	185A	C5
NZR-06-185-CS]	185	160	170A	220A	C5
NZR-06-220-CS		220	185	200A	250A	C5
NZR-06-250-CS]	250	220	220A	280A	C6
NZR-06-280-CS]	280	250	250A	315A	C6
NZR-06-315-CS	1	315	280	280A	355A	C6
NZR-06-355-CS]	355	315	315A	400A	C6
NZR-04-T-CS	-	5.5~7.5	3.7~5.5	12.0A	16.0A	C1
NZR-04-S-CS		11~15	7.5~11	16.5A	22.5A	C1
NZR-04-M-CS		18.5~22	15~18.5	25.5A	32A	C2
NZR-04-L-CS		30~37	22~30	36A	45A	C2
NZR-04-X-CS		45	37	44A	55A	C2
NZR-04-055-CS		55	45	60A	75A	C3
NZR-04-075-CS		75	55	72A	90A	C3
NZR-04-090-CS		90	75	88A	110A	C3
NZR-04-110-CS	380Vac	110	90	125A	160A	C4
NZR-04-132-CS		132	110	145A	185A	C4
NZR-04-160-CS		160	132	170A	220A	C5
NZR-04-185-CS	1	185	160	200A	250A	C5
NZR-04-220-CS]	220	185	225A	280A	C5
NZR-04-250-CS		250	220	280A	355A	C6
NZR-04-280-CS]	280	250	315A	400A	C6
NZR-04-315-CS	1	315	280	355A	450A	C6
NZR-04-355-CS	1	355	315	400A	500A	C6
NZR-02-T-CS	0001/00	3.7~5.5	2.2~3.7	12.0A	16.0A	C1
NZR-02-S-CS	220Vac	7.5~11	5.5~7.5	16.5A	22.5A	C1

NZR-02-M-CS	15	11	25.5A	32A	C2
NZR-02-L-CS	18.5	15	36A	45A	C2
NZR-02-X-CS	22	18.5	44A	55A	C2
NZR-02-030-CS	30	22	60A	75A	C3
NZR-02-037-CS	37	30	72A	90A	C3
NZR-02-045-CS	45	37	88A	110A	C3
NZR-02-055-CS	55	45	125A	160A	C4
NZR-02-075-CS	75	55	145A	185A	C4

Chart 3-3 Standard product selection table

Heavy duty Version – Selection Table

		Adapted moto	or power (KW)	50% DTC	Peak	
H version	Voltage	Asynchronous	Synchronous	rated current	current	Shell
NZR-06-037-CH		37	30	33A	45A	C3
NZR-06-045-CH		45	37	41A	55A	C3
NZR-06-055-CH		55	45	56A	75A	C3
NZR-06-075-CH		75	55	80A	110A	C4
NZR-06-090-CH		90	75	95A	132A	C4
NZR-06-110-CH		110	90	115A	160A	C4
NZR-06-132-CH	660Vac	132	110	132A	185A	C5
NZR-06-160-CH		160	132	160A	220A	C5
NZR-06-185-CH		185	160	185A	250A	C5
NZR-06-220-CH		220	185	210A	280A	C6
NZR-06-250-CH		250	220	235A	315A	C6
NZR-06-280-CH		280	250	265A	355A	C6
NZR-06-315-CH		315	280	300A	400A	C6
NZR-04-T-CH		3.7~5.5	2.2~3.7	11.0A	16.0A	C1
NZR-04-S-CH		7.5~11	5.5~7.5	15.0A	22.5A	C1
NZR-04-M-CH		15~18.5	11~15	24A	32A	C2
NZR-04-L-CH		22~30	18.5~22	33A	45A	C2
NZR-04-X-CH		37	30	41A	55A	C2
NZR-04-045-CH		45	37	56A	75A	C3
NZR-04-055-CH		55	45	67A	90A	C3
NZR-04-075-CH		75	55	82A	110A	C3
NZR-04-090-CH	380Vac	90	75	120A	160A	C4
NZR-04-110-CH		110	90	135A	185A	C4
NZR-04-132-CH		132	110	160A	220A	C5
NZR-04-160-CH		160	132	185A	250A	C5
NZR-04-185-CH]	185	160	220A	280A	C5
NZR-04-220-CH		220	185	265A	355A	C6
NZR-04-250-CH]	250	220	300A	400A	C6
NZR-04-280-CH		280	250	335A	450A	C6
NZR-04-315-CH		315	280	375A	500A	C6

NZR-02-T-CH		2.2~3.7	2.2	11.0A	16.0A	C1
NZR-02-S-CH		5.5~7.5	3.7~5.5	15.0A	22.5A	C1
NZR-02-M-CH		11	7.5	24A	32A	C2
NZR-02-L-CH		15	11	33A	45A	C2
NZR-02-X-CH	000) (5.5	18.5	15	41A	55A	C2
NZR-02-022-CH	220Vac	22	18.5	56A	75A	C3
NZR-02-030-CH		30	22	67A	90A	C3
NZR-02-037-CH		37	30	82A	110A	C3
NZR-02-045-CH		45	37	120A	160A	C4
NZR-02-055-CH		55	45	135A	185A	C4

Chart 3-4 Heavy-duty product selection Chart

Persistent Version – Selection Table

		Adapted moto	or power (KW)	100% DTC	Peak	
C version	Voltage	Asynchronous	Synchronous	rated current	current	Shell
NZR-06-037-CC		37	30	30A	55A	C3
NZR-06-045-CC		45	37	41A	75A	C3
NZR-06-055-CC		55	45	55A	110A	C4
NZR-06-075-CC		75	55	75A	132A	C4
NZR-06-090-CC		90	75	90A	160A	C4
NZR-06-110-CC	660Vac	110	90	110A	185A	C5
NZR-06-132-CC	000vac	132	110	132A	220A	C5
NZR-06-160-CC		160	132	160A	250A	C5
NZR-06-185-CC		185	160	170A	280A	C6
NZR-06-220-CC	-	220	185	200A	315A	C6
NZR-06-250-CC		250	220	220A	355A	C6
NZR-06-280-CC		280	250	250A	400A	C6
NZR-04-T-CC		2.2~3.7	2.2	9.0A	16.0A	C1
NZR-04-S-CC		5.5~7.5	3.7~5.5	13.0A	22.5A	C1
NZR-04-M-CC		11	7.5	16.5A	32A	C2
NZR-04-L-CC		15	11	24.2A	45A	C2
NZR-04-X-CC		18.5~22	15~18.5	30.2A	55A	C2
NZR-04-030-CC		30	22	41A	75A	C3
NZR-04-037-CC		37	30	50A	90A	C3
NZR-04-045-CC	380Vac	45	37	60A	110A	C3
NZR-04-055-CC	360Vac	55	45	90A	160A	C4
NZR-04-075-CC		75	55	105A	185A	C4
NZR-04-090-CC		90	75	132A	220A	C5
NZR-04-110-CC		110	90	160A	250A	C5
NZR-04-132-CC		132	110	185A	280A	C5
NZR-04-160-CC		160	132	250A	355A	C6
NZR-04-185-CC		185	160	280A	400A	C6
NZR-04-220-CC		220	185	315A	450A	C6

NZR-04-250-CC		250	220	355A	500A	C6
NZR-02-T-CC		2.2	2	9.0A	16.0A	C1
NZR-02-S-CC		3.7~5.5	2.2~3.7	13.0A	22.5A	C1
NZR-02-M-CC		7.5	5.5	16.5A	32A	C2
NZR-02-L-CC	220Vac	11	7.5	24.2A	45A	C2
NZR-02-X-CC		15	11	30.2A	55A	C2
NZR-02-018-CC		18.5	15	41A	75A	C3
NZR-02-022-CC		22	18.5	50A	90A	C3
NZR-02-030-CC		30	22	60A	110A	C3
NZR-02-037-CC		37	30	90A	160A	C4
NZR-02-045-CC		45	37	105A	185A	C4

Chart 3-5 Continuous Product Selection Chart

3.4 Product dimensions and installation dimensions

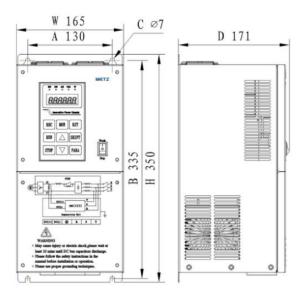


Figure 3-1 C1 wall-mounted chassis dimensions and installation dimensions

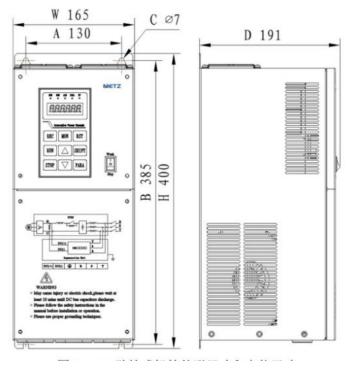


Figure 3-2 C2 wall-mounted chassis dimensions and installation dimensions

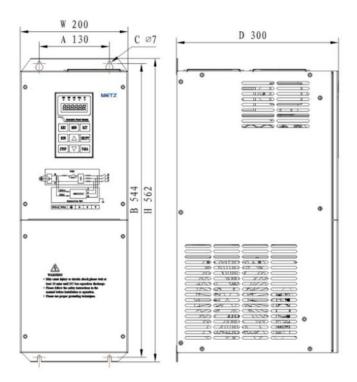


Figure 3-3 C3 wall-mounted chassis dimensions and installation dimensions

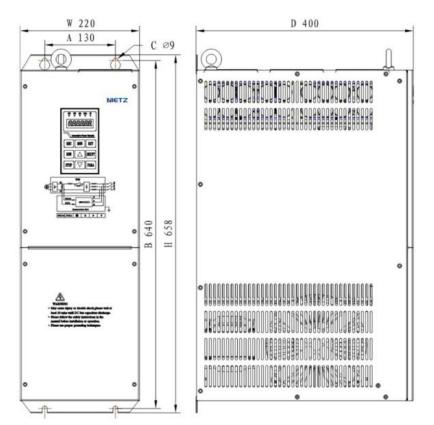


Figure 3-4 C4 wall-mounted chassis dimensions and installation dimensions

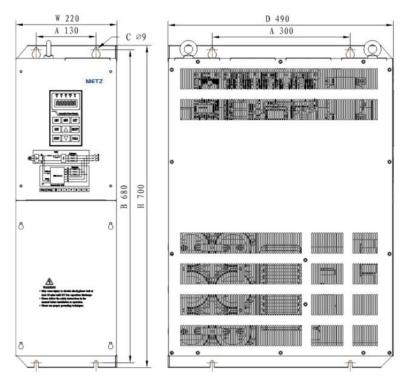


Figure 3-5 C5 wall-mounted chassis dimensions and installation dimensions

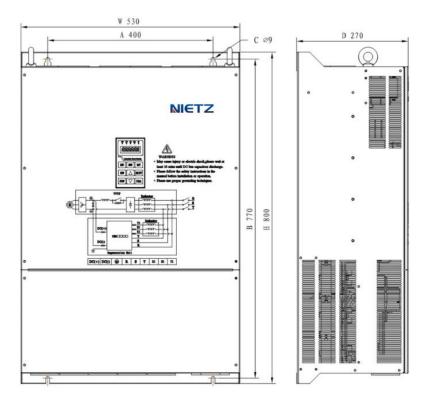
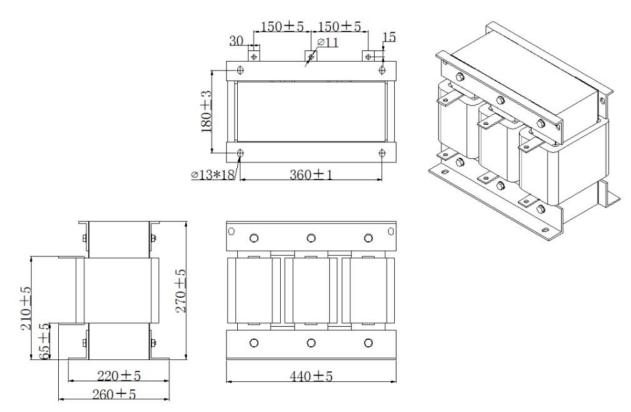



Figure 3-6 C6 wall-mounted chassis dimensions and installation dimensions

Figure 2.7 External Depater DE 150/0.5 I	Dimonsions and Mounting Dimonsions
Figure 3-7 External Reactor PF-150/0.5-L	

Dimensions

	C5 chassis with external reactor PF-150/0.5-L one, connected to R1/S1/T1 terminal
Note	C6 chassis with external reactor PF-150/0.5-L two pcs, and connected to R1/S1/T1 in parallel

Shell of Wall-mounted	W_mm	H_mm	A_mm	B_mm	C_mm	D_mm	Package weight,kg
C1	165	350	130	335	¢7	171	11 (including buit-in reactor)
C2	165	400	130	385	¢7	191	17 (including buit-in reactor)
C3	200	562	130	544	¢7	300	41 (including buit-in reactor)
C4	220	658	130	640	¢ 9	400	58 (including buit-in reactor)
C5	220	700	130	680	¢9	490	141 (including buit-in reactor
C5 flat type	490	700	300	680	¢9	220	PF-150/0.5-L, 1 unit)
C6	530	800	400	770	¢ 9	270	262 (including buit-in reactor PF-150/0.5-L, 2 units)

Chart 3-6 Chassis installation dimension table

Chapter 4 Installation Guide

4.1 Main Circuit Wiring

1. The main circuit is wired in the form of terminals. Open the terminal cover of the case. Wiring according to the terminal identification.

DC(+) DC(-) 🕒 R S	T
-------------------	---

Pic.4-1 Main circuit description of C1, C2, C3,C4 case

Terminal mark	Functional description
R,S,T	3 phase power supply's terminals. No need to distinguish phase sequence
	Ground terminal. Prevent the chassis leakage current from causing harm to human body.
DC (+)	DC input terminal, Connect to the positive terminal of the DC bus of the general inverter.
DC (-)	DC input terminal, Connect to the negative terminal of the DC bus of the general inverter.

Chart 4-1 C1, C2, C3, and C4 chassis main circuit wiring instructions

4-2 Main circuit description of C5, C6 case

Terminal mark	Functional description			
R, S, T	3 phase power supply's terminals of Sync signal, See Figure 4-4 for connection method			
R1, S1, T1	3 phase output reactor terminal. See Figure 4-4 for connection method			
	Ground terminal. Prevent the chassis leakage current from causing harm to human body.			
DC (+)	DC input terminal, Connect to the positive terminal of the DC bus of the general inverter.			
DC (-) DC input terminal, Connect to the negative terminal of the DC bus of the general inverter.				

2. Wiring principle diagram of energy feedback device and inverter main circuit , Refer to Figure 4-3 and Figure 4-4

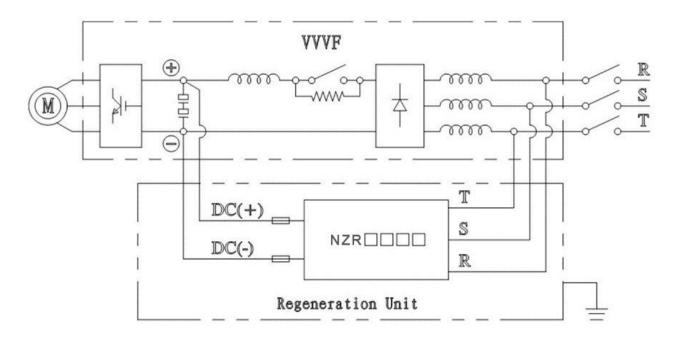
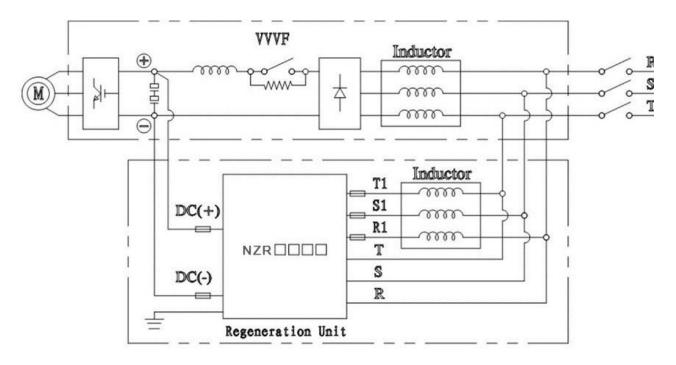
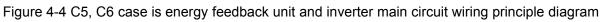




Figure 4-3 C1、C2、C3、C4 Type Chassis energy feedback device and inverter main circuit wiring schematic

wiring schematic

	The C5 shell suited 1 unit Reactor PF-150/0.5-L, contact on terminal R1/S1/T1
Note	The C6 shell suited 2 units Reactor PF-150/0.5-L, parallel contact on terminal R1/S1/T1

4.2 Control loop wiring

1, NZR sine wave energy feedback device has a control board inside, and its control terminal is shown in figure 4-3.

Port	Port func	tion description
Control	CN16 (DC BUS)	DC bus voltage port (note that the positive and negative poles cannot be
		connected incorrectly)
port	CN5 (RST)	Three-phase Grid sampling port
	J2 (T1) and J3	Temperature sensor port
	(T2)	
	CN6 (HU)	U-phase voltage type Hall sensor sampling port
	CN8 (HV)	V-phase voltage type Hall sensor sampling port
	CN9 (HW)	W-phase voltage type Hall sensor sampling port
	CN7	RS232 Keyboard communication port
User	ΤΑ、ΤΒ、ΤΟ	TA/TB is the relay output normally closed ; TC/TB is the relay output
		normally open ;
port		(AC: 270V/3A; DC: 30V/3A); its function is determined by HH06
		parameters
	T1A、T1B、T1C	T1A/T1B is the relay output normally closed ; T1C/T1B is the relay output
		normally open ;
		(AC: 270V/3A; DC: 30V/3A); its function is determined by HH07
		parameters
	24V	24V output voltage, maximum output current 0.5A, COM is earth wire
	EXT	External fault input: EXT and COM are shorted-valid, EXT and COM are
		disconnected- invalid.
	DI1	Machine enable control terminal: DI1 and COM are shorted-valid, DI1 and
		COM are disconnected- invalid.
	DI2	External control input: DI2 and COM are shorted-valid, DI2 and COM are
		disconnected- invalid.
	DI3	Elevator emergency power supply input: DI3 and COM are shorted to
		enable elevator emergency power have output,
		DI3 is disconnected from COM to stop elevator emergency power output
	DI4	Elevator emergency power supply input shutdown: DI4 and COM are
		shorted to turn off the elevator emergency power output.
		DI4 is disconnected from COM to turn on the elevator emergency power
		output
	DI5	Contactor input normally open : DI5 is shorted to COM for connected, DI5 is
		disconnected from COM for disconnection
	DI6	Grid input status : DI6 and COM are short-circuited for grid abnormal, DI6
		and COM are disconnected for normal
	DI7	Battery input status: DI7 and COM are shorted for the battery capacity
		normal, and DI7 and COM are disconnected for battery in low.
	СОМ	Public use port
	485+、485-	RS485 Communication port

Figure 4-3 Control board terminal block description chart

2 .The control board has three control modes: stop, regenerative feedback/feedback, and emergency power output. These three modes are selected by the combination of DI1, DI3, DI4, DI5, DI6, and DI7 terminals. See chart 4-4 for details.

Model				DI Terminal (DI and COM: Short= 0, Disconnect =1, X =Any)			
	DI1	DI3	DI4	DI5	DI6	DI7	
Stop	1	X	Х	Х	Х	Х	
Regen Feedback	0	x	x	0	1	x	
Stop	0	X	Х	1	1	X	
Stop	0	x	x	x	0	1	
Stop	0	X	X	0	0	0	
Stop	0	1	x	1	0	0	
Stop	0	0	0	1	0	0	
Emergency power output	0	0	1	1	0	0	

4-4 Control board control mode Chart

Vote

3. The NZR sine wave energy feedback device is configured by default in the rectification feedback/feedback control mode, that is, DI1 and DI5 are shorted to COM, as shown in Chart 4-4. The UU--24 parameters in Chart 5-9 are set to 1 and configured as feedback mode. In the feedback mode, when the input DC bus voltage is higher than the feedback operation voltage, NZR operates in the feedback model; when the input DC bus voltage is lower than the feedback operation voltage, NZR operates in the stop feedback model. In the feedback mode, you can configure the UU--30 parameters in Chart 5-9 to select the float charge control.

The red switch button on the C1 and C2 chassis cover is the terminal to directly connect DI1 and COM s. Red switch operation: Operation= DI1 and COM shorted : Stop=disconnected from D

Red switch operation: Operation= DI1 and COM shorted ; Stop=disconnected from DI1 and COM

4. If the NZR sine wave energy feedback device needs to be configured for other control modes, you can refer to UU--24 and UU--30 parameters in Chart 4-4 and Chart 5-9. Refer to chart 4-3 for the description of the control panel port unctions.

Item			Cable		
			Cross-sectional a	area(mm2)	
S Series	H Series	C Series	Main circuit line	Earth Wire	Control terminal
NZR-02-T-CS	NZR-02-T-CH	NZR-02-T-CC	≥2.5	≥0.8	≥0.8
NZR-02-S-CS	NZR-02-S-CH	NZR-02-S-CC	≥4	≥0.8	≥0.8
NZR-02-M-CS	NZR-02-M-CH	NZR-02-M-CC	≥6	≥2.5	≥0.8
NZR-02-L-CS	NZR-02-L-CH	NZR-02-L-CC	≥6	≥2.5	≥0.8
NZR-02-X-CS	NZR-02-X-CH	NZR-02-X-CC	≥8	≥2.5	≥0.8
NZR-02-030-CS	NZR-02-022-CH	NZR-02-018-CC	≥10	≥4	≥0.8
NZR-02-037-CS	NZR-02-030-CH	NZR-02-022-CC	≥10	≥4	≥0.8
NZR-02-045-CS	NZR-02-037-CH	NZR-02-030-CC	≥20	≥6	≥0.8
NZR-02-055-CS	NZR-02-045-CH	NZR-02-037-CC	≥25	≥6	≥0.8
NZR-02-075-CS	NZR-02-055-CH	NZR-02-045-CC	≥25	≥6	≥0.8
Item			Cable		
			Cross-sectional area (mm2)		
S Series	H Series	C Series	Main circuit line	Earth Wire	Control terminal
NZR-04-T-CS	NZR-04-T-CH	NZR-04-T-CC	≥2.5	≥0.8	≥0.8
NZR-04-S-CS	NZR-04-S-CH	NZR-04-S-CC	≥4	≥0.8	≥0.8
NZR-04-M-CS	NZR-04-M-CH	NZR-04-M-CC	≥6	≥2.5	≥0.8

NZR-04-L-CS	NZR-04-L-CH	NZR-04-L-CC	≥6	≥2.5	≥0.8
NZR-04-X-CS	NZR-04-X-CH	NZR-04-X-CC	≥8	≥2.5	≥0.8
NZR-04-055-CS	NZR-04-045-CH	NZR-04-030-CC	≥10	≥4	≥0.8
NZR-04-075-CS	NZR-04-055-CH	NZR-04-037-CC	≥10	≥4	≥0.8
NZR-04-090-CS	NZR-04-075-CH	NZR-04-045-CC	≥20	≥6	≥0.8
NZR-04-110-CS	NZR-04-090-CH	NZR-04-055-CC	≥25	≥6	≥0.8
NZR-04-132-CS	NZR-04-110-CH	NZR-04-075-CC	≥25	≥6	≥0.8
NZR-06-045-CS	NZR-06-037-CH	NZR-06-030-CC	≥8	≥2.5	≥0.8

NZR-06-055-CS	NZR-06-045-CH	NZR-06-037-CC	≥10	≥4	≥0.8
NZR-06-075-CS	NZR-06-055-CH	NZR-06-045-CC	≥10	≥4	≥0.8
NZR-06-090-CS	NZR-06-075-CH	NZR-06-055-CC	≥20	≥6	≥0.8
NZR-06-110-CS	NZR-06-090-CH	NZR-06-075-CC	≥25	≥6	≥0.8
NZR-06-132-CS	NZR-06-110-CH	NZR-06-090-CC	≥25	≥6	≥0.8
Note			Main circuit line i	ncludes : R、	S、T、DC(+)、
			DC (-)		

Chart 4-5 C1, C2, C3, C4 Chassis wiring cable description Chart

Item			Cable		
			Cross-sectional	area(mm2)	
S Series	H Series	C Series	Main circuit line	Earth Wire	Control
					terminal
NZR-04-160-CS	NZR-04-132-CH	NZR-04-090-CC	≥35	≥8	≥0.8
NZR-04-185-CS	NZR-04-160-CH	NZR-04-110-CC	≥35	≥8	≥0.8
NZR-04-220-CS	NZR-04-185-CH	NZR-04-132-CC	≥50	≥8	≥0.8
NZD 04 050 00			205	240	>0.0
NZR-04-250-CS	NZR-04-220-CH	NZR-04-160-CC	≥65	≥10	≥0.8
NZR-04-280-CS	NZR-04-250-CH	NZR-04-185-CC	≥65	≥10	≥0.8
NZR-04-315-CS	NZR-04-280-CH	NZR-04-220-CC	≥80	≥10	≥0.8
NZR-04-355-CS	NZR-04-315-CH	NZR-04-250-CC	≥80	≥10	≥0.8
NZR-06-160-CS	NZR-06-132-CH	NZR-06-110-CC	≥35	≥8	≥0.8
NZR-06-185-CS	NZR-06-160-CH	NZR-06-132-CC	≥35	≥8	≥0.8
NZR-06-220-CS	NZR-06-185-CH	NZR-06-160-CC	≥50	≥8	≥0.8
NZR-06-250-CS	NZR-06-220-CH	NZR-06-185-CC	≥65	≥10	≥0.8
NZR-06-280-CS	NZR-06-250-CH		NGE	≥10	
		NZR-06-220-CC	≥65	_	≥0.8
NZR-06-315-CS	NZR-06-280-CH	NZR-06-250-CC	≥80	≥10	≥0.8
NZR-06-355-CS	NZR-06-315-CH	NZR-06-280-CC	≥80	≥10	≥0.8

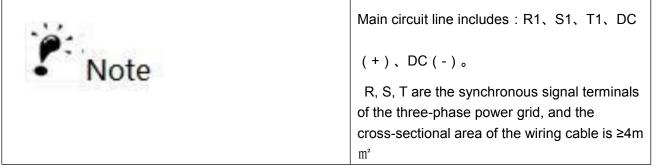


Chart 4-6 C5、C6 Chassis wiring cable description Chart

4.4 Installation space requirements

Note	1. If the device is installed in a cabinet such as a control cabinet, fully consider the heat dissipation problem, reserve a cooling hole or install an fan to ensure that the temperature around the device does not exceed the specified value. Do not install in a closed box with poor heat dissipation and small space.
- Note	2.If the device is installed in a cabinet such as a control cabinet, ensure that there is a sui Chart space for each device up and down and left and right. As shown in Figure 4-5A.
	3、When install multiple units in the same equipment or control cabinet, it is recommended to install them horizontally, easy wiring and reducing the thermal
	effects between each other. As shown in Figure 4-6.
	4. If it is limited by the installation space, it must be arranged up and down (vertical alignment). A partition should be placed in the middle to prevent the heat from the lower part from affecting the upper part. As shown in Figure 4-5B.
Marning	The device should not be installed near flammable or explosive objects. It should not be installed in direct sunlight, conductive dust and corrosive gas. It should not be installed in a place easy to touch, otherwise it may cause an accident.

Figure 4-5 Retaining space requirements for each device up, down, left, and right

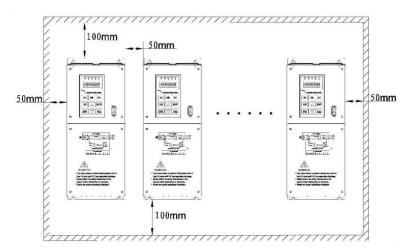


Figure 4-6 Multiple devices are installed horizontally to install the upper and lower left and right reserved space requirements.

Chapter 5 Parameter Settings

5.1 Keyboard Control Setting

5.1.1 Keyboard operation panel

The keyboard operation panel is composed of status indication area, data display area and button operation area.

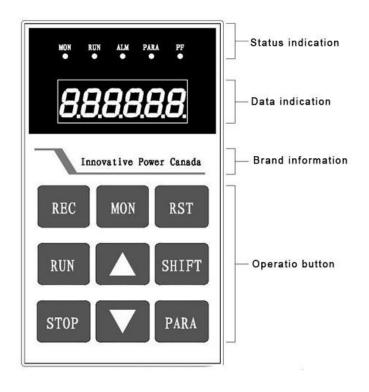


Figure 5-1 Keyboard operation panel

5.1.2 Status indication

0.1.2 00			
Indicator	Indicating Content		
MON	When this lamp ON, then "MON" or "REC" menu display status.		
RUN	When this lamp ON,DI1 and COM port shorted enable working status		
ALM	When this lamp ON, Error alarm, NZR stops working,		
	And display the corresponding error code in the data display screen		
PARA	When this lamp ON, "PARA" or "RST" menu display status		
PF	PF When this lamp ON, Three-phase emergency power output status;		
	This light flashes then NZR start to feedback output or rectification		
	feedback output , the flashing frequency is 5Hz.		

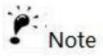
Note: All status indicators are always on and the display 8.8.8.8.8.8. indicates that the communication cable connection is abnormal.

Chart 5-1 O peration panel status indicators

5.1.3 Data Display Section

The data display part is displayed by a six-digit LED digital tube, and the displayed content is different according to the selected parameter code. The displayed content is represented by a decimal number and is displayed individually in code (for example, displaying a fault code).

When the software detects error, regardless of the current display content, will directly display the error code, and the "ALM" indication will turn ON; when the error is eliminated, the delay setting Recovery time (default 30 seconds, the software can set different recovery time according to different errors. For details, please refer to Chart 5-8), the software will automatically recover and display the contents of the "FF00" parameter data.


5.1.4 Button operation

Button	Function			
MON	Enter "MON"menu and view the monitoring parameters.			
REC	Enter "REC" menu and view the error record parameters.			
	(After the error occurs, press this button to view the error record)			
PARA	Enter "PARA" menu and modify or view the function parameters.			
RST	Enter the "RST" menu, modify or view the debug parameters (require a password to modify)			
SHIFT	Shift to left			
	(Press "SHIFT" once, move one bit to the left, then 1.5Hz frequency flash)			
Δ	Numerical up key			
\bigtriangledown	Numerical down key			
STOP	Parameter modification status (only DI1 is disconnected from the COM port, this button is valid)			
RUN	Confirm parameter modification			
Chart 5	2 Keyboard Rutton List			

Chart 5-2 Keyboard Button List

Steps	Keyboard operation		
	Monitoring parameter view	Error record parameter view	
Menu	Press MON to enter,	Press the REC button to enter,	
	The default display FF00	Default display REC00	
Select	Press SHIFT、 \triangle 、 \bigtriangledown to select parameter code	Press SHIFT、 \triangle 、 \bigtriangledown to select parameter code	
Confirm	Press RUN to confirm	Press RUN to confirm	

Chart 5-3 Monitoring parameters and error record parameters

ONLY when DI1 and COM port is disconnected ,then you can modify the parameters chart 5-4 5-5 5-6

Steps	Keyboard operation			
	Function parameter modification	Function parameter view		
Menu	Press the PARA button to enter, default display HH00	Press the PARA button to enter, default display HH00		
Select	Press SHIFT、 \triangle 、 \bigtriangledown to select parameter code	Press SHIFT, \triangle , \bigtriangledown to select parameter code		
Enter modify	Press STOP to enter the modification state, and the six-digit modified value is displayed at this time.			
Modify	Press SHIFT、 \triangle 、 \bigtriangledown to select parameter code,not saved			
Confirm	Press RUN to confirm the modified parameter value and save it.	Press RUN to confirm the display		

Chart 5-4 Function parameter modification or viewing operation Chart

Steps	Keyboard Operation				
	Debug parameter modification	Debug parameter view			
Menu	Press RST to enter, default display UU00	Press RST to enter, default display UU00			
Select	Press SHIFT, $ riangle$, $ riangle$ to select parameter code	Press SHIFT, \triangle , \bigtriangledown key to select parameter code			
password status	Press STOP to enter the password input status and display				
password input	Press SHIFT, \triangle , \bigtriangledown to enter the correct six-digit password.				
password confirm	Press RUN to confirm the password. Simultaneous display of six modified values				
Modify	Press SHIFT, \triangle , \bigtriangledown to modify the parameter value, but it has not been saved yet.				
Confirm	Press RUN to confirm the modified parameter value and save. Press RUN to confirm the display.	Press RUN to confirm the display.			

Chart 5-5 Modifying the debugging parameters or viewing the operation chart

Steps	Keyboard operation			
Menu	Press RST to enter, default display UU00			
Select	Press SHIFT, $ riangle$, $ riangle$ key to select UU 99			
Original password	Press STOP to enter the original password input state, display			
status				
Original password	Press SHIFT, \triangle , ∇ to enter the correct original password.			
input				
Original password	Press RUN to confirm the original password and enter the new password input status and			
confirm	display(the six-digit password cannot contain the "-" character)			
New password	Press SHIFT, \triangle , \bigtriangledown to enter the new password value, but it has not been saved yet.			
input				
New password	Press RUN to confirm the modified new password value and save it.			
confirm				

Chart 5-6 Keyboard password modification operation Chart

5.1.5 Control Board Keyboard Parameters

Chart 5-7 shows the monitoring parameter Chart. Refer to Chart 5-3 for the

button operation procedure.

parameter Code	parameter name	Unit	Value	Display description
FF00	Feedback energy	KWH	Range 0 ~ 99999.9	Cumulative energy feed back to the grid
FF01	PWM output enable state	1	0~1	0→PWM Stop output 1→PWM output
FF02	AC grid voltage level	VAC	220/380/660	AC grid voltage level applicable to the machine, RMS
FF03	Machine power	KW	2.2~500.0	Machine power rating
FF04	Temperature sensor T1	°C	-20 ~ 99.9	Temperature of T1 sensor
FF05	Temperature sensor T2	°C	-20 ~ 99.9	Temperature of T2 sensor
FF06	Fan control status	1	0~1	0→Fan Stop;1→Fan operation
FF07	EEPROM status	1	0~1	0→normal ; 1→abnormal
FF08	RS232 Communication status	1	0~1	0→Communication does not send data ;
				1→Communication send data
FF09	TA/TB/TC Relay output status	1	0~1	0→TA/TB closed , TC/TB open ;

				1→TA/TB open , TC/TB closed ;
FF10	T1A/T1B/T1C Relay output status	1	0~1	0→T1A/T1B closed , T1C/T1B open ;
				$1 \rightarrow T1A/T1B$ open , T1C/T1B closed ;
FF11	DI1 input status	1	0~1	1 \rightarrow DI1/COM Disconnect ; 0 \rightarrow DI1/COM shorted
FF12	DI2 input status	1	0~1	1 \rightarrow DI2/COM Disconnect ; 0 \rightarrow DI2/COM shorted
FF13	DI3 input status	1	0~1	1 \rightarrow DI3/COM Disconnect ; 0 \rightarrow DI3/COM shorted
FF14	DI4 input status	1	0~1	1→DI4/COM Disconnect ; 0→DI4/COM shorted
FF15	DI5 input status	1	0~1	1→DI5/COM Disconnect ; 0→DI5/COM shorted
FF16	DI6 input status	1	0~1	1→DI6/COM Disconnect ; 0→DI6/COM shorted
FF17	DI7 input status	1	0~1	1 \rightarrow DI7/COM Disconnect ; 0 \rightarrow DI7/COM shorted
FF18	EXT input status	1	0~1	1→EXT/COM disconnected 0→EXT/COM shorted
FF19	Machine working mode	1	0~2	0→stop mode; 1→rectification feedback/feedback mode; 2→Emergency power output mode
FF20	DC bus voltage	V	0~1240.0	Display DC bus voltage value
FF21	DC bus charging	1	0~1	0→Bus charging is not completed; 1→Bus charging is completed
FF22	Chip PWM output status	1	0~1	Chip: $0 \rightarrow$ no PWM output; $1 \rightarrow$ PWM output
FF23	Rectification feedback state	1	0~1	0→non-rectifying feedback state; 1→rectification feedback state
FF24	Power grid R phase zero offset coefficient	1	0~65520	The display range is between 30768 and 34768, indicating that the correction is correct, otherwise it needs to be recalibrated.
FF25	Power grid S phase zero offset coefficient	1	0~65520	

FF26	Power grid T phase zero offset coefficient	1	0~65520	
FF27	Current R phase zero offset coefficient	1	0~65520	The display range is between 30768 and 34768, indicating that the correction is correct. Otherwise, it needs to be recalibrated (the Hall sensor should be connected and then corrected)
FF28	Current S phase zero offset coefficient	1	0~65520	
FF29	Current T phase zero offset coefficient	1	0~65520	
FF30	Phase sequence of three-phase power grid	1	0~1	0→Phase sequence R →S→T ; 1→Phase sequence R →T→S
FF31	Three-phase grid voltage	VAC	0.0~900.0	Display three-phase AC grid voltage, RMS
FF32	R phase grid voltage	VAC	0.0~520.0	Display R phase AC grid voltage, RMS
FF33	S phase grid voltage	VAC	0.0~520.0	Display S phase AC grid voltage, RMS
FF34	T phase grid voltage	VAC	0.0~520.0	Display T phase AC grid voltage, RMS
parameter Code	parameter name	unit	variation range	Display description
FF35	Three-phase average current	A	0~2000.0	Display the average current of the three-phase AC grid, RMS
FF36	R phase current	A	0~2000.0	Shows the average current of the R-phase grid, RMS
FF37	S phase current	A	0~2000.0	Shows the average current of the S-phase grid, RMS
FF38	T phase current	A	0~2000.0	Shows the average current of the T-phase grid, RMS
FF39	Rectified electric energy	KW H	0~99999.9	Consumed cumulative power consumption of the grid during rectification
FF40	Grid average frequency	Hz	0~100.00	Display the average frequency of the three-phase grid
FF41	R phase grid frequency	Hz	0~100.00	Display R phase grid frequency
FF42	S phase grid frequency	Hz	0~100.00	Display S phase grid frequency
FF43	T phase grid frequency	Hz	0~100.00	Display T phase grid frequency

FF44	Machine running maximum current	A	0.0~600.0	Actual running maximum current = this value / Hall number
FF45	Default setting maximum current	A	0.0~600.0	Actual setting maximum current = this value / Hall number
FF46	Feedback power	KW	0.0~999.9	Energy power fed back to the grid
FF47	Rectified power	KW	0.0~999.9	Power consumption of the grid during rectification
other	display8.8.8.8.8.8.	RE	Reserve	Reserve

Chart 5-7 Monitoring parameter Chart of the control board

Chart 5-8 is the function parameter Chart . Refer to Chart 5-4 for the key operation steps.

Parameter code	Parameter name	unit	variation range	Defaults	Detailed description of the parameters
HH00	Sensor T1 oH1 overheat protection temperature	°C	55 ~ 95.0	80.0	If the value of the T1 temperature sensor is higher than this setting, jump oH1 overheat protection
HH01	Sensor T2 oH2 overheat protection temperature	Ĉ	55 ~ 95.0	80.0	If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat protection
HH02	oH1 overheat protection Recovery Time	S	2~3600	30	FF04 is less than (HH00 - 10) After the delay is set, the protection is restored.
HH03	oH2 overheat protection Recovery Time	S	2~3600	30	FF05 is less than (HH01 - 10) After the set value is delayed, the protection is restored.
HH04	Fan control mode	1	0~4	0	Fan control mode reference Chart 5-11
HH05	EXT external fault Recovery Time	S	2~3600	30	After the external fault is eliminated, the recovery time is delayed, and the software automatically recovers.
HH06	TA/TB/TC control mode	1	0~24	14	Relay Control Mode Reference Chart 5-12
HH07	T1A/T1B/T1C Relay control mode	1	0~24	14	Relay Control Mode Reference Chart 5-12

HH08	DC bus Threshold voltage	V	180.0 ~ 1200.0	400.0	Control the TA/TB/TC relay and set the bus threshold voltage. Refer to Chart 5-12.
HH09	DC bus Threshold voltage 1	V	180.0 ~ 1200.0	400.0	Control the T1A/T1B/T1C relay and set the threshold voltage. Refer to Chart 5-12.
HH10	TA/TB/TC Relay timing	min	1~17280	30	Control the TA/TB/TC relay and set the timing time. Refer to Chart 5-12.
HH11	T1A/T1B/T1C Relay timing time 1	min	1~17280	30	Control the T1A/T1B/T1C relay, set the timing time 1, refer to Chart 5-12
Parameter code	Parameter name	unit	variation range	Default s	Detailed description of the parameters
HH12	TA/TB/TC Relay conduction time	S	0~240	30	Used to control the TA/TB/TC relay and set the on-time. Refer to Chart 5-12.
HH13	T1A/T1B/T1C Relay conduction time 1	S	0~240	30	Control the T1A/T1B/T1C relay and set the on-time 1. Refer to Chart 5-12.
HH14	TA/TB/TC Relay off time	S	0~240	30	Used to control the TA/TB/TC relay and set the off time. Refer to Chart 5-12.
HH15	T1A/T1B/T1C Relay off time 1	S	0~240	30	Control the T1A/T1B/T1C relay and set the off time 1. Refer to Chart 5-12.
HH16	DC bus voltage Automatic correction	V	200.0 ~ 1200.0	Display bus voltage	Enter the required correction value in the modified value. After 3 seconds, press the "RUN" button to confirm the completion of the automatic calibration (within the step size ±50V, if it exceeds ±50V, please correct it multiple times)
HH17	Charging contactor open Voltage threshold	V	220VAC: 130 ~ 170 380VAC: 220 ~ 300 660VAC: 380 ~ 480	220VAC : 130.0 380VAC : 220.0 660VAC : 380.0	After the DC bus voltage is less than the set value, the charging contactor will open.

HH18	Charging contactor	V	220VAC:	220VAC	After the DC bus voltage is greater than the
	Voltage threshold		220 ~ 270	: 240.0	set value and delays the HH21 setting, the charging contactor will pick up
			380VAC:	380VAC	
			380 ~ 580	: 430.0	
			660VAC:	660VAC	
			640 ~ 900	: 740.0	
HH19	DC bus voltage	V	220VAC:	220VAC	After the DC bus voltage is greater than the
	oE overvoltage protection threshold		350~480	: 430.0	set value, the oE overvoltage protection fault is reported.
			380VAC:	380VAC	
			720 ~ 820	: 800.0	
			660VAC:	660VAC	
			1120~	: 1200.0	
			1220	1200.0	
HH20	DC bus voltage	V	220VAC:	220VAC	After the DC bus voltage is less than the set
	LE undervoltage protection threshold		180~210	: 180.0	value, the LE undervoltage protection fault is reported.
			380VAC:	380VAC	
			310~370	: 320.0	
			660VAC:	660VAC	
			490~620	: 560.0	
HH21	Charging contactor	S	2~240	2	After reaching the suction condition, after
	delay				the set time is delayed, the suction is completed.
HH22		S		30	When the voltage is less than (HH19 - 20)
ΠΠ22	oE overvoltage protection	3	2~3600	30	delay the set value, the protection is
	Recovery Time				restored.
HH23	LE undervoltage	S	2~3600	30	DC bus voltage is higher than HH18
	Protection recovery time				delays, the set value, protection recovery
HH24	HE hardware	S	2~3600	30	The voltage is less than (HH19 - 20V) and
	overvoltage		2~3000		the set
	protection Recovery Time				value is delayed, and the protection is restored. Hardware overvoltage: 505V,
					840V, 1240V

HH25	RS485 communication address	1	0~31	31	RS485 communication machine address
HH26	Three phase voltage current Zero offset correction	1	0~6	0	When set to 6, the calibration is entered. After 3 seconds, the value is changed from 6 to 1. The calibration is completed.
Parameter code	Parameter name	unit	variation range	Defaults	Detailed description of the parameters
HH27	Power supply three-phase power grid Phase sequence correction	1	0~6	Auto	0 correction failed 1 correction succeeded 6 entered calibration, failure 3 seconds for the grid is dead
HH28	Three-phase power grid RMS voltage Automatic correction	VA C	50.0 ~ 900.0	Display grid voltage	Enter the required correction value in the modified value. After 3 seconds, press the "RUN" button to confirm the completion of the automatic calibration (within the step size ±50V, if it exceeds ±50V, please correct it multiple times)
HH29	FF three-phase grid frequency Fault protection recovery time	S	2~3600	30	After the grid over/under frequency fault is eliminated and the set value is delayed, the protection is restored.
HH30	UF three-phase power grid amplitude fault protection recovery time	S	2~3600	30	The power grid amplitude over/under voltage fault is eliminated and the set value is delayed, then the protection is restored.
HH31	Three-phase power grid Phase voltage amplitude Overvoltage protection setting	VA C	220VAC: 130 ~ 180 380VAC: 225 ~ 308 660VAC: 380 ~ 496	220VAC : 153.0 380VAC : 264.0 660VAC : 458.0	If the phase voltage amplitude of the three-phase power grid is greater than the set value, the UF protection fault is reported.
HH32	Three-phase	VA C	220VAC:	220VAC :	If the phase voltage amplitude
	power grid Phase voltage amplitude Undervoltage protection setting		76~127 380VAC: 131~222 660VAC:	101.0 380VAC : 175.0 660VAC :	of the three-phase power grid is less than the set value, the UF protection fault is reported.

			228 ~ 370	304.0	
HH33	PF grid abnormality or phase loss fault protection recovery time	S	2~3600	30	Grid phase anomaly or phase loss fault elimination delay the set value, protection recovery
HH34	oC overcurrent protection Recovery Time	S	2~3600	30	Protection recovery after overcurrent fault cancellation and delay of the set value
HH35	Overload protection starting point	1	0.75 ~ 0.95	0.75	This item is the percentage of the maximum current of the machine. If the set value is exceeded, the overload protection time will be calculated.
HH36	Maximum running current of the machine corresponds to overload protection time	S	0.1 ~ 5.0	3.0	This setting is the overload protection time corresponding to the maximum current of the machine. Refer to the calculation formula below.
Overload pr	otection time (seconds):	Y=100	0*(1-X)2+B, s	et HH36 t	to B, HH35 to X, X range [0.75 ~ 0.95]
HH37	oL overload protection Recovery Time	S	2~3600	30	Current overload protection fault elimination delay the set value, then protection recovery
HH38	Rectified feedback voltage / Feedback voltage	V	220VAC: 180 ~ 480 380VAC: 400 ~ 800 660VAC: 800 ~ 1200	220VAC : 330.0 380VAC : 600.0 660VAC : 1000.0	When the DC bus voltage is higher than the set value, feedback starts. When the set value is lower than this set value, the rectification/feedback stops.

HH39	Three-phase	VA	220VAC:	220VAC	Control three-phase emergency power
	emergency power supply	С	140 ~ 300	: 220.0	supply output voltage within ±10% range
	The output voltage		380VAC:	380VAC	
			280~480	: 380.0	
			660VAC:	660VAC	
			560 ~ 760	: 660.0	
HH40	Fan starting temperature	°C	43~53	43.0	Fan control mode reference chart 5-11
Parameter code	Parameter name	unit	variation range	Defaults	Detailed description of the parameters
HH41	Emergency power delay enable	1	0~1	1	0→Enable stop ; 1→Enable output
HH42	Three-phase emergency power supply Delayed output time	S	0.1 ~ 1800.0	10.0	When the delay output is enabled, this is the time for the three-phase emergency power supply delay output.
Other	Display 8.8.8.8.8.8	kee p	keep	keep	Кеер

Chart 5-8 Function parameter chart of the control board

Chart 5-9 is the debugging parameter Chart . Refer to Chart 5-5 for the operation steps.

Parameter code	Parameter name	unit	variation range	Defaults	Detailed description of the parameters
UU00	Restore initialization parameters	1	0~6	0	When the set value is 6, the control panel will revert to the initialization parameters after being powered on again.
UU01	PWM carrier frequency	KHz	8.0~8.0	8.0	Non-professionals, please do not modify
UU02	PWM dead zone	μS	2.0 ~ 10.0	3.0	Non-professionals, please do not modify
UU03	PWM output mode	1	0~1	0	0 vector bipolar 1 vector unipolar
UU04	Three-phase grid zero crossing	1	500~	2000	Non-professionals, please do not modify
			4000		

UU05	Hall rated current	A	5~2000	100	Non-professionals, please do not modify
UU06	Number of circles around the Hall	1	1~5	1	Non-professionals, please do not modify
UU07	Current rms Display	A	2.0 ~	Display Curren	Enter the required correction value in the modified value.
	correction		1000.0	t value	After 3 seconds, press the "RUN" button to confirm the completion of the automatic calibration (within the correction step length within ±50A, please repeat the correction for more than ±50A)
UU08	Feedback energy ratio coefficient	1	0.80~	1.00	Non-professionals, please do not modify
UU09	Rectified energy proportional coefficient	1	0.80 ~ 2.00	1.00	Non-professionals, please do not modify
UU10	Feedback power display clear	1	0~6	0	0 is not cleared; 1 is cleared successfully; 6 enter clear
UU11	Rectified energy display clear	1	0~6	0	
UU12	Grid frequency calculation option	1	0~2	0	0 rated frequency is not calculated 1 Calculate the real-time frequency of the 50Hz grid 2 Calculate the real-time frequency of the 60Hz grid
UU13	Input grid rated frequency	Hz	40.0 ~ 70.0	50.00	Rated frequency of three-phase input grid
UU14	50Hz grid over frequency	Hz	55.0 ~ 65.0	65.00	50Hz grid over frequency protection point
UU15	50Hz grid underfrequency	Hz	35.0 ~ 45.0	35.00	50Hz grid underfrequency protection point

UU16	60Hz grid over frequency	Hz	66.0 ~ 78.0	78.00	60Hz grid over frequency protection point
UU17	60Hz grid underfrequency	Hz	42.0 ~ 54.0	42.00	60Hz grid underfrequency protection point
UU18	Clear all fault records	1	0~6	0	0 failure 1 clear success 6 enter clear
UU19	Leading lag phase angle	Deg ree	-20 ~ 20	0.0	Non-professional please do not modify (left positive and
					right negative)
UU20	P parameter of current PI	1	0.01~	1.000	Non-professionals, please do not modify
UU21	I parameter of current PI	1	4.00 0.001~ 1.5	0.007	Non-professionals, please do not modify
UU22	Rectified charging current acceleration	1	1~4	1	25ms*X,like 25ms*1=25ms
UU23	Machine running maximum current	A	0.8 ~ 1.1 times	Built-in	Maximum current = this value / Hall number
UU24	Rectifier feedback or feedback	1	0~1	0	0→Rectifier feedback ; 1→feedback
Parameter code	Parameter name	unit	variation range	Defaults	Detailed description of the parameters
UU25	Three-phase emergency power supply output sampling standard value voltage	VAC	220VAC: 155.0 ~ 465 380VAC: 307.0 ~ 921 660VAC: 450.0 ~ 1350	220VAC : 310.0 380VAC : 614.0 660VAC : 900.0	Non-professionals, please do not modify
UU26	P parameter of voltage PI	1	0.01 ~ 4.00	0.500	Non-professionals, please do not modify
UU27	I parameter of voltage PI	1	0.001~ 1.5	0.100	Non-professionals, please do not modify

UU28	Rectified feedback differential pressure level	1	2.0 ~ 16.0	3.0	Voltage difference : 220VAC : 120/3.0=40.0V Other grid : 160/3.0=53.3V
UU29	Current feedforward decoupling coefficient	1	0.0 ~ 0.250	0.100	Non-professionals, please do not modify WL
UU30	DI2 is float control	1	0~2	0	0 invalid 1 short circuit valid 2 disconnection effective
UU31	Emergency power supply acceleration time	1	1~15	4	672ms*X,如 672ms*5=2688ms
UU32	DI4 shorting delay enable	1	0~1	1	0→Delayed stop ; 1→Delay enable
UU33	DI4 short delay time	S	1~1200	30	DI4 short-circuit shutdown delay time
UU34	Feedback current deviation value	1	1~320	40	Non-professionals, please do not modify
UU35	Relay operating temperature	Ĉ	10.0 ~ 20.0	10.0	Control relay, refer to chart 5-12
UU36	Floating charge	V	220VAC: 180~480 380VAC: 400~800 660VAC: 800~ 1200	220VAC : 350.0 380VAC : 650.0 660VAC : 1050.0	Non-professionals, please do not modify
UU98	Software version		PFA-X.X	X:0~9	Other parameters, display8.8.8.8.8.8
UU99	Modify the keyboard password	1	0,1,2,3,4 5,6,7,8,9	default8 88888	Refer to Chart 5-6. After the parameter is initialized, the password will also be initialized to 888888.

Chart 5-9 Debugging parameters of the control board

Parameter	Parameter name	unit	variation	Defaults	Detailed description of the
code			range		parameters
REC-00	Latest failure		E0-XXX	E0	E0 E1 E2 E3 E4For no failure
REC-01	The first failure before the latest		E1-XXX	E1	
REC-02	The latest second failure		E2-XXX	E2	
REC-03	The latest third failure		E3-XXX	E3	
REC-04	The latest 4th previous failure		E4-XXX	E4	
XXX is one of	faults as follows: oH1, oH2, EF	F, oE, LE	E, HE, FF, UF, I	PF, oC, and	oL. Refer to Chart 6-1.
REC-05	oH1 Number of failures		oH1-XX	oH1-00	XX : 0 ~ 99 cycle display
REC-06	Bus voltage at oH1	V	0~1240.0	0.0	DC bus voltage
REC-07	R phase voltage at oH1	VAC	0.0~520	0.0	R phase voltage
REC-08	S phase voltage at oH1	VAC	0.0~520	0.0	S phase voltage
REC-09	T phase voltage at oH1	VAC	0.0~520	0.0	T phase voltage
REC-10	R phase current at oH1	A	0~2000.0	0.0	R phase current
REC-11	S phase current at oH1	A	0~2000.0	0.0	S phase current
REC-12	T phase current at oH1	A	0~2000.0	0.0	T phase current
Parameter code	Parameter name	unit	variation range	Default s	Detailed description of the parameters
REC-13	oH2 Number of failures		oH2-XX	oH2-00	XX : 0 ~ 99 cycle display
REC-14	Bus voltage at oH2	V	0~1240.0	0.0	DC bus voltage
REC-15	R phase voltage at oH2	VAC	0.0 ~ 520	0.0	R phase voltage
REC-16	S phase voltage at oH2	VAC	0.0 ~ 520	0.0	S phase voltage

▶ 5 Chart 5-10 is the error record parameter chart. Refer to chart 5-3 for the operation steps.

REC-17	T phase voltage at oH2	VAC	0.0~520	0.0	T phase voltage	
REC-18	R phase current at oH2	A	0~2000.0	0.0	R phase current	
REC-19	S phase current at oH1	A	0~2000.0	0.0	S phase current	
REC-20	T phase current at oH1	A	0~2000.0	0.0	T phase current	
REC-21	EF failure occurrences		EFXX	EF00	XX : 0 ~ 99 cycle display	
REC-22	Bus voltage at EF	V	0~1240.0	0.0	DC bus voltage	
REC-23	R phase voltage at EF	VAC	0.0~520	0.0	R phase voltage	
REC-24	S phase voltage at EF	VAC	0.0 ~ 520	0.0	S phase voltage	
REC-25	T phase voltage at EF	VAC	0.0~520	0.0	T phase voltage	
REC-26	R phase current at EF	A	0~2000.0	0.0	R phase current	
REC-27	S phase current at EF	A	0~2000.0	0.0	S phase current	
REC-28	T phase current at EF	A	0~2000.0	0.0	T phase current	
REC-29	oE Number of failures		oEXX	oE00	XX : 0 ~ 99 cycle display	
REC-30	Bus voltage at oE	V	0~1240.0	0.0	DC bus voltage	
REC-31	R phase voltage at oE	VAC	0.0~520	0.0	R phase voltage	
REC-32	S phase voltage at oE	VAC	0.0~520	0.0	S phase voltage	
REC-33	T phase voltage at oE	VAC	0.0~520	0.0	T phase voltage	
REC-34	R phase current at oE	A	0~2000.0	0.0	R phase current	
REC-35	S phase current at oE	A	0~2000.0	0.0	S phase current	
REC-36	T phase current at oE	A	0~2000.0	0.0	T phase current	
REC-37	LE Number of failures		LEXX	LE00	XX : 0 ~ 99 cycle display	
REC-38	Bus voltage at LE	V	0~1240.0	0.0	DC bus voltage	
REC-39	R phase voltage at LE	VAC	0.0~520	0.0	R phase voltage	

REC-40	S phase voltage at LE	VAC	0.0 ~ 520	0.0	S phase voltage
REC-41	T phase voltage at LE	VAC	0.0 ~ 520	0.0	T phase voltage
REC-42	R phase current at RE	A	0~2000.0	0.0	R phase current
REC-43	S phase current at LE	A	0~2000.0	0.0	S phase current
REC-44	T phase current at LE	A	0~2000.0	0.0	T phase current
REC-45	HE Number of failures		HEXX	HE-00	XX:0~99 cycle display
REC-46	Bus voltage at HE	V	0~1240.0	0.0	DC bus voltage
REC-47	R phase voltage at HE	VAC	0.0~520	0.0	R phase voltage
REC-48	S phase voltage at HE	VAC	0.0~520	0.0	S phase voltage
REC-49	T phase voltage at HE	VAC	0.0~520	0.0	T phase voltage
REC-50	R phase current at HE	A	0~2000.0	0.0	R phase current
REC-51	S phase current at HE	A	0~2000.0	0.0	S phase current
REC-52	T phase current at HE	A	0~2000.0	0.0	T phase current
REC-53	FF Number of failures		FFXX	FF00	XX:0~99 cycle display
REC-54	Bus voltage at FF	V	0~1240.0	0.0	DC bus voltage
Parameter code	Parameter name	unit	variation range	Default s	Detailed description of the parameters
REC-55	R phase voltage at FF	VAC	0.0 ~ 520	0.0	R phase voltage
REC-56	S phase voltage at FF	VAC	0.0~520	0.0	S phase voltage
REC-57	T phase voltage at FF	VAC	0.0~520	0.0	T phase voltage
REC-58	R phase current at FF	A	0~2000.0	0.0	R phase current
REC-59	S phase current at FF	A	0~2000.0	0.0	S phase current
REC-60	T phase current at FF	A	0~2000.0	0.0	T phase current
REC-61	UF Number of failures		UFXX	UF00	XX:0~99 cycle display
REC-62	Bus voltage at UF	V	0~1240.0	0.0	DC bus voltage 40

REC-63	R phase voltage at UF	VAC	0.0~520	0.0	R phase voltage
REC-64	S phase voltage at UF	VAC	0.0 ~ 520	0.0	S phase voltage
REC-65	T phase voltage at UF	VAC	0.0 ~ 520	0.0	T phase voltage
REC-66	R phase current at UF	A	0~2000.0	0.0	R phase current
REC-67	S phase current at UF	A	0~2000.0	0.0	S phase current
REC-68	T phase current at UF	A	0~2000.0	0.0	T phase current
REC-69	PF Number of failures		PFXX	PF00	XX : 0 ~ 99 cycle display
REC-70	Bus voltage at PF	V	0~1240.0	0.0	DC bus voltage
REC-71	R phase voltage at PF	VAC	0.0 ~ 520	0.0	R phase voltage
REC-72	S phase voltage at PF	VAC	0.0 ~ 520	0.0	S phase voltage
REC-73	T phase voltage at PF	VAC	0.0 ~ 520	0.0	T phase voltage
REC-74	R phase current at PF	A	0~2000.0	0.0	R phase current
REC-75	S phase current at PF	A	0~2000.0	0.0	S phase current
REC-76	T phase current at PF	A	0~2000.0	0.0	T phase current
REC-77	oC Number of failures		oCXX	oC00	XX : 0 ~ 99 cycle display
REC-78	Bus voltage at oC	V	0~1240.0	0.0	DC bus voltage
REC-79	R phase voltage at oC	VAC	0.0~520	0.0	R phase voltage
REC-80	S phase voltage at oC	VAC	0.0~520	0.0	S phase voltage
REC-81	T phase voltage at oC	VAC	0.0~520	0.0	T phase voltage
REC-82	R phase current at oC	A	0~2000.0	0.0	R phase current
REC-83	S phase current at oC	A	0~2000.0	0.0	S phase current
REC-84	T phase current at oC	A	0~2000.0	0.0	T phase current
REC-85	oL Number of failures		oLXX	oL00	XX : 0 ~ 99 cycle display

REC-86	Bus voltage at oL	V	0~1240.0	0.0	DC bus voltage
REC-87	R phase voltage at oL	VAC	0.0~520	0.0	R phase voltage
REC-88	S phase voltage at oL	VAC	0.0~520	0.0	S phase voltage
REC-89	T phase voltage at oL	VAC	0.0~520	0.0	T phase voltage
REC-90	R phase current at oL	A	0~2000.0	0.0	R phase current
REC-91	S phase current at oL	A	0~2000.0	0.0	S phase current
REC-92	T phase current at oL	A	0~2000.0	0.0	T phase current
Others	Display 8.8.8.8.8.8.	keep	Кеер	Кеер	Кеер

Chart 5-10 Fault record parameter chart of the control board

Value	Fan control instructions
0	FF04 display value is higher than HH40 item or FF05 display value is higher than HH40 item or IGBT
	drive, fan operation; FF04 display value is less than (HH40 - 3) and FF05 display value is less than (HH40
	- 3) and IGBT stops driving, delay 1 second fan stop
1	Power on Fan keep working
2	When DI2 is shorted to COM, the fan runs; when DI2 is disconnected from COM, the fan stops after 1
	second delay.
3	FF04 indicates that the value is higher than HH40 or FF05 is higher than HH40 or DI2/COM is
	shorted, the fan is running;
	When FF04 shows that the value is less than (HH40 - 3) and FF05 shows that the value is less than
	(HH40 - 3) and DI2/COM is disconnected, the fan stops after 1 second delay.
4	FF04 display value is higher than HH40 parameters or FF05 display value is higher than HH40
	parameters, fan operation;
	FF04 display value is less than (HH40 - 3) and FF05 display value is less than (HH40 - 3), delay 1
	second fan stop

Chart 5-11 Fan control mode Chart of the control board

> TA/TB/TC relay and T1A/T1B/T1C relay control mode Chart

Value	TA/TB/TC relay co	ontrol mode	T1A/T1B/T1C relay control mode			
value						
	Operation : TA/TE	B Open, TC/TB	Operation : T1A/T1B Open , T1C/T1B Closed			
	Closed Stop:TA/TB Closed,TC/TB		Stop: T1A/T1B Closed, T1C/T1B Open			
	Open					
0	Overload status c	ontrol:Enter OL	Overload status control:Enter OL state, Operation; exit OL state,			
	state, Operation; e Stop	exit OL state,	Stop			
1		DI1 Control : D	I1/COM Shorted,operation ; DI1/COM disconnected,Stop			
2	DI2 Control :		DI2 Control :			
	DI2/COMShorted,	operation ;	DI2/COMShorted,operation; DI2/COM disconnected,Stop			
	DI2/COM disconn	ected.Stop				
3			I3/COMShorted,operation ; DI3/COM disconnected,Stop			
4						
-	DI4 Control :		DI4 Control :			
	DI4/COMShorted,	operation;	DI4/COMShorted,operation; DI4/COM disconnected,Stop			
	DI4/COM disconn	ected,Stop				
5		DI5 Control : D	15/COMShorted, operation; DI5/COM disconnected, Stop			
6	DI6 Control :		DI6 Control :			
	DI6/COMShorted,	operation ;	DI6/COMShorted,operation; DI6/COM disconnected,Stop			
	DI6/COM disconn	ected,Stop				
7		DI7 Control : D	N7/COMShorted, operation; DI7/COM disconnected, Stop			
8	EXT Control :		EXT Control :			
	EXT/COMShorted,operation;		EXT/COMShorted,operation ; EXT/COM disconnected,Stop			
	EXT/COM disconnected,Stop					
9			n operation, operation; fan stop, stop			
10	Three-phase eme	• • •	Three-phase emergency power output status control:			
	output status cont		Emergency power output, operation; no emergency power output,			
	Emergency power		stop			
	operation; no eme output, stop	ergency power				
	ουιραί, διορ					

11		back output state control: rectified feedback output, operation; no edback output, stop
12	PWM output enable state control: PWM enable output, operation; PWM stop output, stop	PWM output enable state control: PWM enable output, operation; PWM stop output, stop
13	DC bus chargin	ng contactor state control: when the contactor is closed, operation; actor is opened, stops
14	Error control:	action when there is error; Stop when there is no error
15	DC bus threshold voltage control: set HH08 item to Vth Busbar>Vth, operation; busbar <(Vth - 20), Stop	DC bus threshold voltage 1 control: set HH09 item to Vth1 Busbar>Vth1, operation; busbar <(Vth1 - 20), Stop
16	DC bus threshold voltage control: set HH08 item to Vth Busbar <vth, busbar="" operation;=""> (Vth + 20), stop</vth,>	DC bus threshold voltage 1 control: set HH09 item to Vth1 bus line <vth1, bus="" line="" operation;="">(Vth1 + 20), stop</vth1,>
Control	TA/TB/TC relay control	T1A/T1B/T1C Relay Control Description
value	instructions Operation: TA/TB is open, TC/TB is closed Stop: TA/TB closed, TC/TB open	operation: T1A/T1B is open, T1C/T1B is closed Stop: T1A/T1B is closed and T1C/T1B is open
17	DI1 is the enable control terminal, and HH10 is the timing time: During the time set by HH10, the HH12 on-time and the HH14 off-time are alternately switched in turn. On time, operation; turn off time,Stop	DI1 is the enable control terminal, and HH11 is the timing time: Periodically during the time set in HH11 The HH13 conduction time and the HH15 off time are alternately switched. Turn On time, operation; turn off time, Stop
18	DI2 is the enable control terminal, and HH10 is the timing time: During the time set by HH10, the HH12 on-time and the HH14 off-time are alternately switched in turn. Turn On time, operation; turn off time,Stop	DI2 is the enable control terminal, and HH11 is the timing time: Periodically during the time set in HH11 The HH13 conduction time and the HH15 off time are alternately switched. Turn On time, operation; turn off time, Stop

19	EXT is the enable control terminal, HH10 items are the timing time: During the time set by HH10, the HH12 on-time and the HH14 off-time are alternately switched in turn. Turn On time, operation; turn off	EXT is the enable control terminal, and HH11 is the timed: Periodically during the time set in HH11 The HH13 conduction time and the HH15 off time are alternately switched. Turn On time, operation; turn off time, Stop
20	time, StopDI1 is the enable controlterminal: the HH12 on-timeand the HH14 off-time arecyclically switched in a periodicmanner.Turn On time, operation; turn offtime Stop	DI1 is the enable control terminal: the HH13 conduction time and the HH15 off time are cyclically switched in a periodic manner. Turn On time, operation; turn off time, Stop
21	time,Stop DI2 is the enable control terminal: the HH12 on-time and the HH14 off-time are cyclically switched in a periodic manner. Turn On time, operation; turn off time, Stop	DI2 is the enable control terminal: the HH13 conduction time and the HH15 turn-off time are cyclically switched in a periodic manner. Turn On time, operation; turn off time, stop
22	EXT is the enable control terminal: the HH12 on-time and the HH14 off-time are cyclically switched in a periodic manner. Turn On time, operation; turn off time, stop	EXT is the enable control terminal: the HH13 conduction time and the HH15 off time are cyclically switched in a periodic manner. turn On time, operation; turn off time, Stop
23	DC bus charging is completed and there is no error, operation; otherwise, Stop	DC bus charging is completed and there is no error, operation; otherwise, Stop
24	Sensor T1 temperature control: set UU35 items to Th T1>Th, operation; T1<(Th-2), Stop	Sensor T1 temperature control: set UU35 items to Th T1>Th, operation; T1<(Th-2), stop

Chart 5-12 Control board Relay control mode Chart

5.2 Setting of common control parameters

5.2.1 Setting of rectification feedback/feedback action voltage

If the rectification feedback/feedback action voltage does not meet the requirements of field operation, you can change the HH--38 parameters in Chart 5-8 to change the rectification feedback/feedback action voltage.

5.2.2 Setting of three-phase emergency power supply output voltage

If the output voltage of the three-phase emergency power supply cannot meet the requirements of field operation, you can change the HH--39 parameters in Chart 5-8 to change the output voltage of the three-phase emergency power supply.

5.2.3 Setting of three-phase emergency power supply delay output time

From the three-phase power grid to the three-phase emergency power output, the fastest response time is 50mS. If the time of the three-phase emergency power supply delay output cannot meet the requirements of field work, you can change the HH--41 parameter and the HH--42 parameter in Chart 5-8 to change the time from the three-phase power failure to the three-phase emergency power output.

5.2.4 Setting of the contact voltage of the charging contactor

If the charging contactor's pull-in voltage cannot meet the requirements of field work, you can change the HH--18 parameter in Chart 5-8 to change the operating voltage of the charging contactor.

5.2.5 Charging contactor pull-in delay time setting

If the charging contactor pull-in delay time does not meet the requirements of field work, you can change the HH--21 parameter in Chart 5-8 to change the delay time of the charging contactor.

5.2.6 Setting of Fault Protection Recovery Time

The software default fault protection recovery time is 30S. If the fault protection recovery time does not meet the requirements of field work, you can change the fault protection recovery time by changing the HH--02 or HH--03 or HH--05 or HH--22 or HH--23 or HH--24 or HH--29 or HH--30 or HH--33 or HH--34 or HH--37 parameters in Chart 5-8.

5.2.7 Control Mode Settings

If the NZR sine wave energy feedback device needs to be configured in other control modes, it can be configured according to the UU--24 parameters and UU--30 parameters in Chart 4-4 and Chart 5-9. Refer to Chart 4-3 for the corresponding control board port function description. DI1/COM is the enable control terminal, which can be configured as a simple PLC control function.

5.2.8 Relay normally open normally closed contact output setting

If you need to use the relay normally open normally closed contact output as the control, you can set the relay configuration, refer to the HH--06 and HH--07 parameters in Chart 5-8 and Chart 5-12.

5.2.9 Overheat protection temperature value Setting

If you need to change the overheat protection temperature value, please refer to the HH--00 and HH--01 parameters in Chart 5-8.

5.2.10 Fan Control Mode Settings

If you need to change the fan control mode, please refer to the HH--04 parameters in Chart 5-8 and Chart 5-11.

5.2.11 Overvoltage Protection Threshold VoltageSetting

To change the overvoltage protection threshold voltage, refer to the HH--19 or HH--31 parameters in Chart 5-8.

5.2.12 Undervoltage Protection Threshold VoltageSetting

To change the undervoltage protection threshold voltage, refer to the HH--20 or HH--32 parameters in Chart 5-8.

5.2.13 Voltage and current zero offset correction Setting

Refer to HH--26 parameters in Chart 5-8.

5.2.14 Voltage and current display value correction Setting

Refer to HH--16 or HH--28 parameters in Chart 5-8.

5.2.15 Current overload time setting

Refer to the HH--35 and HH--36 parameters in Chart 5-8.

5.2.16 Rectification charging current acceleration time setting

Refer to the UU--22 parameters in Chart 5-9 for the time when the rectified charging current is accelerated to the bus voltage.

5.2.17 Acceleration time setting for three-phase emergency power output

For the time when the emergency power supply is accelerated from zero to the standard voltage output, refer to the UU--31 parameters in Chart 5-9.

5.2.18 Floating Charge Control Settings

When the inverter stops, when the DC bus voltage of the NZR device is required to rise, the floating charge source control settings refer to the UU--30 and UU--36 parameters in Chart 5-9.

The setting of the above common control parameters can also be completed through

RS485 communication settings.

5.3 RS485 communication

5.3.1 Data communication protocol adopted

The communication protocol used by the control board in our product unit is a subset of the MODBUS communication protocol. The communication protocol defines the method and function code for reading and writing control board parameters.

5.3.2 Networking Mode

Through RS485 communication, it can form two single-host multi-slave and single-single single-slave networking modes.

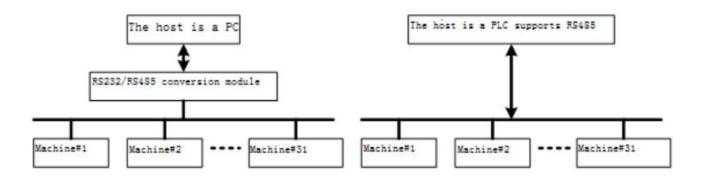


Figure 5-2 Schematic diagram of a single-master multi-slave network

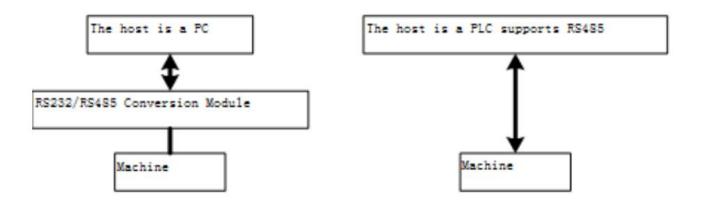


Figure 5-3 Schematic diagram of a single-master single-slave network

5.3.3 Communication physical interface

The control board in our product unit has RS485 interface terminals (respectively: RS485 signal positive "485+" and RS485 signal negative "485-"), communication mode is asynchronous communication, half duplex, 9600 baud rate, eight digits Data bit, no parity, one stop bit.

5.3.4 Communication protocol format

The MODBUS protocol of RTU mode is only supported in our product device. The communication frame format is as follows:

Figure 5-4 Communication protocol format

In the MODBUS communication protocol of the RTU mode, the data is specified to transmit the upper byte first and then the lower byte. Data verification uses CRC

cyclic redundancy check.

The slave address range is 0 to 31. It can be set in the keyboard. If the parameter "HH25" is displayed as 31, it means that the slave address is 31, which is 0x1F.

5.3.5 MODBUS communication protocol function code

1. Support for reading and writing parameters

function code	Function code meaning
0x06	Read a number of consecutive addresses (up to 16, at least 1) of registers
0x08	Test loop feedback
0x16	Write a single register

Chart 5-13 Function codes supported by the control board

> The control panel's function parameters, control parameters and status parameters are mapped to the MODBUS read and write registers.

The slave address range is 0 to 31. It can be set in the keyboard. If the parameter "HH25" is displayed as 31, it means that the slave address is 31, which is 0x1F. (DI1/COM is the enable control port: DI1/COM is shorted to enable; DI1/COM is disconnected to stop. When modifying parameters, DI1/COM needs to be disconnected to modify the parameters.)

When RS485 communication is performed on a single machine, the J4 interface on the control board is set to ROFF (the default corresponding two pin pins are not connected); when multiple machines RS485 network communication, the J4 interface on the control board is set to RON (set

Corresponding to the two pins shorted).

function	Features	Command inf	formation	Response	Abnormal
code				message	response
					information
		Number of bytes	Minimum number of bytes	Maximum number of bytes	Number of bytes
0x06	Read a number of consecutive registers	8	7	37	5
0x08	Test loop feedback	8	8	8	5
0x16	Write a single register	8	8	8	5

5.3.6 Communication data format description

Chart 5-14 Information frame byte length

5.3.7 Communication response error code

Error code	Error condition
0x00	When testing loop feedback, the input test data does not match
0x01	The test address entered does not match when testing loop feedback
0x02	The number of read registers is either zero or more than 16, or the address overflows (exceeding the 0x012C address range)
0x03	DI1/COM is not disconnected when modifying parameters
0x04	The entered address does not match the address of the modifiable register
0x05	The register modification has not been completed yet, and new parameters are written to be modified.
0x06	The input function code does not match, or the address of the input register overflows (exceeding the 0x012C address range)
0x07	The entered CRC check code does not match
No response message Compatible with multiple RS485 in parallel	The input RS485 communication machine address does not match (please set the correct communication format: 9600 baud rate, eight data bits, no parity, one stop bit; if the communication format is set incorrectly, there is no response message or response Error in information data)
	Eight bytes of command information can be input in batches, or input once, and there is no response message when the command information entered is less than eight bytes.

5-15 Communication response error code

➢ If there is no response information, set the correct communication format and test the RS485 link with test loop feedback. If there is no response message from the test loop feedback, there is a problem with the RS485 link connection.

RS485 is half-duplex communication. It is guaranteed that there is no command information input within 200mS of the response message, otherwise the response information data will be wrong.

Enter eight bytes of command information as one data command frame, and each data command frame time interval requirement is greater than 200mS. Otherwise, the input command information overlaps with the response information, causing the response information to be in error or lost.

➢ If the input data command frame is larger than eight bytes, the redundant input command information overlaps with the response information, causing the response information data to be in error.

5.3.8 Abnormal response message format

				CRC check		
	Slave address	function code	Error code	High byte	Low byte	
Hexadecimal data	1F (correct slave address)	00 (function code initialization)	07	01	C4	

Chart 5-16 Format of abnormal response information

5.3.9 Test loop feedback command information and response message format

	Slave address	function code	Test register address		Test data content		CRC check	
			High byte	Low byte	High byte	Low byte	High byte	Low byte
Hexadecimal data	1F (default)	08	00	55	AA	AA	0D	7A

Chart 5-17 Command information format for test loop feedback

	Slave address	function code	Test register address		Test data content		CRC check	ζ.
			e la		High Low byte byte		High byte	Low byte
Hexadecimal data	1F (default)	08	00	55	AA	AA	0D	7A

Chart 5-18 Response message format for test loop feedback

5.3.10 Register definition

The control board defines the hexadecimal data registers shown in the

following table (each data register is 16-bit unsigned integer data unsigned int)

Address	Function	Bit	Description	Note				
	description	description						
0x0000	PFE error status	0	Error Status	1 Error, 0 Normal				
		1	oH1 temperature sensor T1	1 overheat, 0 Normal				
			overheat Error status					

		2	oH2 temperature sensor T2	1 overheat, 0 Normal
		3	overheat error status EF terminal EXT external input	1 External failure, 0 Normal
			error status	
		4	oE DC bus overvoltage error status	1 Overvoltage error, 0 Normal
		5	LE DC bus undervoltage error condition	1 Undervoltage error, 0 Normal
		6	HE DC bus hardware overvoltage error status	1 Hardware overvoltage, 0 Normal
		7	FF three-phase grid frequency error status	1 Frequency failure, 0 Normal
		8	UF three-phase power grid	1 Amplitude failure, 0 Normal
		9	amplitude error status PF three-phase power grid	1 Phase failure,0 Normal
		10	phase error status oC three-phase overcurrent error status	1 Overcurrent error, 0 Normal
		11	oL three-phase current overload error status	1 Overload error, 0 Normal
		12	Reserved	Reserved
		13	Reserved	Reserved
		14	Reserved	Reserved
		15	Reserved	Reserved
0x0001	Feedback energy	High 16	Cumulative feedback to the grid	32-bit feedback power display,Unit: 0.0001 KWH
0x0002	Feedback energy	Low 16		
0x0003	PWM output enable state	16 Bit	0 is the stop output; 1 is the enable output	Unit: 1
0x0004	AC grid voltage level	16 Bit	Applicable AC grid voltage level, RMS	Unit: VAC
Address	Function description	Bit description	Description	Note
0x0005	Machine power	16 Bit	Machine power rating	Unit: 0.1KW
0x0006	Sensor T1 temperature	16 Bit	Temperature sensor temperature T1	Does not display negative numbers, unit: 0.1 ° C
0x0007	Sensor T2 temperature	16 Bit	Temperature sensor temperature T2	
0x0008	Fan control status	16 Bit	0 is the fan stop; 1 is the fan running	

0x0009	EEPROM status	16 Bit	0 is abnormal for reading and writing; 1 is normal for reading	
0x000A	RS232 communication status	16 Bit	and writing. 0 is not sending data; 1 is sending data	Unit: 1
0x000B	TA/TB/TC Relay output status	16 Bit	0 is TA/TB closed, TC/TB is open; 1 is open for TA/TB, TC/TB is closed;	Unit: 1
0x000C	TA/TB/TC Relay output status	16 Bit	0 is closed for T1A/T1B and T1C/T1B is open; 1 is open for T1A/T1B and closed for T1C/T1B;	Unit: 1
0x000D	DI1 input status	16 Bit	1: DI1/COM is disconnected; 0: DI1/COM is shorted	Unit: 1
0x000E	DI2 input status	16 Bit	1: DI2/COM is disconnected; 0: DI2/COM is shorted	Unit: 1
0x000F	DI3 input status	16 Bit	1: DI3/COM is disconnected; 0: DI3/COM is shorted	Unit: 1
0x0010	DI4 input status	16 Bit	1: DI4/COM disconnected; 0: DI4/COM shorted	Unit: 1
0x0011	DI5 input status	16 Bit	1: DI5/COM disconnected; 0: DI5/COM shorted	Unit: 1
0x0012	DI6 input status	16 Bit	1: DI6/COM is disconnected; 0: DI6/COM is shorted	Unit: 1
0x0013	DI7 input status	16 Bit	1: DI7/COM is disconnected; 0: DI7/COM is shorted	Unit: 1
0x0014	EXT input status	16 Bit	1: EXT/COM is disconnected 0: EXT/COM is shorted	Unit: 1
0x0015	Machine working mode	16 Bit	0 stop mode; 1 rectificationfeedback / feedback mode;2 emergency power output mode	Unit: 1
0x0016	DC bus voltage	16 Bit	Display DC bus voltage value	Unit: 0.1V
0x0017	DC bus charging mark	16 Bit	0 is not completed for charging; 1 is charging completed	Unit: 1
0x0018	Chip PWM output status	16 Bit	0 is no PWM output; 1 is PWM output	Unit: 1
0x0019	Rectification feedback state	16 Bit	0 non-rectifying feedback state; 1 rectification feedback state	Unit: 1
0x001A	R-phase zero-bias coefficient of power grid	16 Bit	The display range is between 30768 and 34768, indicating that the correction is correct, otherwise it needs to be recalibrated.	Unit: 1

0x001B	Power grid S phase zero offset coefficient	16 Bit		
0x001C	Grid T phase zero offset coefficient	16 Bit		
0x001D	Current R phase zero offset coefficient	16 Bit	The display range is between 30768 and 34768, indicating that the correction is correct. Otherwise, it needs to be recalibrated (the Hall sensor should be connected and then corrected)	Unit: 1
0x001E	Current S phase zero offset coefficient	16 Bit		
0x001F	Current T phase zero offset coefficient	16 Bit		
0x0020	Phase sequence of three-phase power grid	16 Bit	0: $R \rightarrow S \rightarrow T$ phase sequence; 1:R $\rightarrow T \rightarrow S$ phase sequence	Unit: 1
0x0021	Three-phase grid voltage	16 Bit	Display three-phase AC grid voltage, RMS	Unit: 0.1VAC
0x0022	R phase grid voltage	16 Bit	Display R phase AC grid voltage, RMS	Unit: 0.1VAC
0x0023	S phase grid voltage	16 Bit	Display S phase AC grid voltage, RMS	Unit: 0.1VAC
0x0024	T phase grid voltage	16 Bit	Display T phase AC grid voltage, RMS	Unit: 0.1VAC
0x0025	Three-phase average current	16 Bit	Average current of three-phase AC grid, RMS	Unit: 0.1A
0x0026	R phase current	16 Bit	Average current of R-phase AC grid, RMS	Unit: 0.1A
0x0027	S phase current	16 Bit	Average current of the S-phase AC grid, RMS	Unit: 0.1A
0x0028	T phase current	16 Bit	Average current of the T-phase AC grid, RMS	Unit: 0.1A
0x0029	Rectified electric energy	High 16 Bit	Consumed cumulative power consumption of the grid during rectification	32-bit rectified power display, Unit: 0.0001 kWh
0x002A	Rectified electric energy	Low 16 Bit		

0x002B		e-phase verage ency	16 Bit	· ·	y the average frequency of ree-phase grid	Unit: 0.01Hz
Address	Funct descr	ion	Bit description	Description		Note
0x002C	R pha	ase grid ency	16 Bit	Displa	y R phase grid frequency	Unit: 0.01Hz
0x002D	S pha freque	ise grid ency	16 Bit	Displa	y S phase grid frequency	Unit: 0.01Hz
0x002E	T pha freque	ise grid ency	16 Bit	Displa	y T phase grid frequency	Unit: 0.01Hz
0x002F	Mach maxin currer		16 Bit		l maximum current = this / Hall number	Unit: 0.1A
0x0030	Defau maxin currer		16 Bit	Actual maximum current = this value / Hall number		Unit: 0.1A
0x0031			High 16 Bit	Display the power delivered back to the grid		Unit: 0.001KW
0x0032	Feed	back power	Low 16 Bit			
0x0033	Rectif	fied power	High 16 Bit	-	y the power consumption grid when rectifying	Unit: 0.001KW
0x0034	Rectif	fied power	Low 16 Bit			
0x0035	Resei	rved	16 Bit	Reser	ved	Reserved
	Rese	rved	16 Bit	Reser	ved	Reserved
0x0064	Resei	rved	16 Bit	Reser	ved	Reserved
0x0065	0065 Latest failure		16 Bit		0x0069 as decimal 6403, X tens and units, then X=6, Y oH2 error; when the read re	red value 0x1903 in 0x0065 to (is thousands, Y is hundreds, Z is (=4, Z=03, check the chart It is egister value is 0x0000, it means aningless characters, such as error)
0x0066	6 The first 16 Bit failure before the latest					
0x0067						

0x0068	The I third	latest	16 Bit										
0x0069	failure The latest 4th previous failure			16 Bit									
X/Y value	0	1	2	3	4	5	6	7	8	9			
represent	С	d	E	F	Н	L	0	Р	U	-			
Z value	01	02	03	04	05	06	07	08	09	10	11	12	13
represent	0	1	2	3	4	5	6	7	8	9	A	b	С
Z Value	14	15	16	17	18	19	20	21	22	23		10 12	
represent	D	Е	F	H	L	0	Р	U	-		i.		
0x006A		failure rrences		16 Bit		nber of t		0 to	Unit:	1			
0x006B	Bus v oH1	voltage	at	16 Bit	DC erro	bus volt r	age at	oH1	Unit:	0.1V			
0x006C	R ph at o⊦	ase vo 11	ltage	16 Bit	-	R-phase voltage at oH1 error			Unit: 0.1VAC				
0x006D	S phase voltage at oH1			16 Bit	S phase voltage at oH1 error			Unit: 0.1VAC					
0x006E	T pha at o⊦	ase vol 11	tage	16 Bit		T-phase voltage at oH1 error			Unit:	0.1VAC	;		
0x006F	R ph at o⊦	ase cu 11	rrent	16 Bit		R phase current at oH1 error			Unit: 0.1A				
0x0070	S pha at o⊦	ase cu 11	rrent	16 Bit	S ph erro	nase cu r	rrent at	oH1	Unit:	0.1A			
0x0071	Phas at oF	se T cu 11	rrent	16 Bit		Phase T current at oH1 error			Unit: 0.1A				
0x0072		failure rrence:	6	16 Bit		Number of failures, 0 to 99 cycles display			Unit:	1			
0x0073	Bus v oH2	voltage	at	16 Bit	DC l erro	bus volt r	age at	oH2	Unit:	0.1V			
0x0074	R ph at o⊦	ase vo 12	ltage	16 Bit	R-pł erro	hase vo r	ltage at	oH2	Unit:	0.1VAC	;		
0x0075	S pha at o⊦	ase vol 12	tage	16 Bit	-	S phase voltage at oH2 error			Unit:	0.1VAC	;		
0x0076	T-pha at o⊦	ase vo 12	tage	16 Bit	-	T-phase voltage at oH2 error			Unit:	0.1VAC	;		
0x0077	R ph at o⊦	ase cu 12	rrent	16 Bit		R-phase current at oH2 error			Unit:	0.1A			
0x0078	S pha at o⊦	ase cu 12	rrent	16 Bit		S phase current at oH2 error			Unit:	0.1A			
0x0079	Phas at o⊦	se T cu 12	rrent	16 Bit	Pha erro	se T cu r	rrent at	oH2	Unit:	0.1A			

0x007A	EF failure occurrences	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x007B	Bus voltage at	16 Bit	DC bus voltage at EF	Unit: 0.1V
	EF		error	
0x007C	R phase voltage at EF	16 Bit	R-phase voltage at EF error	Unit: 0.1VAC
Address	Function description	Bit descript ion	Description	Note
0x007D	S phase voltage at EF	16 Bit	S phase voltage at EF error	Unit: 0.1VAC
0x007E	T phase voltage at EF	16 Bit	T-phase voltage at EF error	Unit: 0.1VAC
0x007F	R phase current at EF	16 Bit	R phase current in EF error	Unit: 0.1A
0x0080	S phase current at EF	16 Bit	S phase current in EF error	Unit: 0.1A
0x0081	T phase current at EF	16 Bit	T-phase current in EF error	Unit: 0.1A
0x0082	oE failure occurrences	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x0083	Bus voltage at oE	16 Bit	DC bus voltage at oE error	Unit: 0.1V
0x0084	R phase voltage at oE	16 Bit	R-phase voltage at oE error	Unit: 0.1VAC
0x0085	S phase voltage at oE	16 Bit	S phase voltage at oE error	Unit: 0.1VAC
0x0086	T-phase voltage at oE	16 Bit	T-phase voltage at oE error	Unit: 0.1VAC
0x0087	R phase current at oE	16 Bit	R phase current at oE error	Unit: 0.1A
0x0088	S phase current at oE	16 Bit	S phase current at oE error	Unit: 0.1A
0x0089	Phase T current at oE	16 Bit	T phase current at oE error	Unit: 0.1A
0x008A	LE failure occurrences	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x008B	Bus voltage at LE	16 Bit	DC bus voltage at LE error	Unit: 0.1V
0x008C	R phase voltage at LE	16 Bit	R-phase voltage at LE error	Unit: 0.1VAC
0x008D	S phase voltage at LE	16 Bit	S-phase voltage at LE error	Unit: 0.1VAC
0x008E	T phase voltage at LE	16 Bit	T-phase voltage at LE error	Unit: 0.1VAC

0x008F	R phase current 16 Bit at LE		R phase current when LE error	Unit: 0.1A
0x0090	S phase current at LE	16 Bit	S-phase current at LE error	Unit: 0.1A
0x0091	T phase current at LE	16 Bit	T-phase current at LE error	Unit: 0.1A
0x0092	Number of HE failures	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x0093	Bus voltage at	16 Bit	DC bus voltage at HE error	Unit: 0.1V
0x0094	R phase voltage at HE	16 Bit	R-phase voltage at HE error	Unit: 0.1VAC
0x0095	S phase voltage at HE	16 Bit	S phase voltage at HE error	Unit: 0.1VAC
0x0096	T phase voltage at HE	16 Bit	T phase voltage at HE error	Unit: 0.1VAC
0x0097	R phase current in HE	16 Bit	R phase current when HE fails	Unit: 0.1A
0x0098	S phase current in HE	16 Bit	S phase current when HE fails	Unit: 0.1A
0x0099	T phase current in HE	16 Bit	T phase current when HE fails	Unit: 0.1A
0x009A	FF failure occurrences	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x009B	Bus voltage at FF	16 Bit	DC bus voltage at FF error	Unit: 0.1V
0x009C	R phase voltage at FF	16 Bit	R-phase voltage at FF error	Unit: 0.1VAC
0x009D	S phase voltage at FF	16 Bit	S phase voltage at FF error	Unit: 0.1VAC
0x009E	T-phase voltage at FF	16 Bit	T-phase voltage at FF error	Unit: 0.1VAC
0x009F	R phase current at FF	16 Bit	R phase current in FF error	Unit: 0.1A
0x00A0	S phase current at FF	16 Bit	S phase current in FF error	Unit: 0.1A
0x00A1	T phase current at FF	16 Bit	T phase current in FF error	Unit: 0.1A
0x00A2	UF failure occurrences	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x00A3	Bus voltage at UF	16 Bit	DC bus voltage at UF error	Unit: 0.1V
0x00A4	R-phase voltage	16 Bit	R-phase voltage at UF error	Unit: 0.1VAC

	at UF			
0x00A5	S phase voltage at UF	16 Bit	S phase voltage at UF error	Unit: 0.1VAC
0x00A6	T-phase voltage at UF	16 Bit	T-phase voltage at UF error	Unit: 0.1VAC
Address	Function description	Bit descripti on	Description	Note
0x00A7	R phase current at UF	16 Bit	R phase current in UF error	Unit: 0.1A
0x00A8	S phase current at UF	16 Bit	S phase current in UF error	Unit: 0.1A
0x00A9	Phase T current at UF	16 Bit	T-phase current in UF error	Unit: 0.1A
0x00AA	PF failure occurrences	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x00AB	Bus voltage at PF	16 Bit	DC bus voltage at PF error	Unit: 0.1V
0x00AC	R phase voltage at PF	16 Bit	R-phase voltage at PF error	Unit: 0.1VAC
0x00AD	S phase voltage at PF	16 Bit	S phase voltage at PF error	Unit: 0.1VAC
0x00AE	T phase voltage at PF	16 Bit	T-phase voltage at PF error	Unit: 0.1VAC
0x00AF	R phase current at PF	16 Bit	R phase current in PF error	Unit: 0.1A
0x00B0	S phase current at PF	16 Bit	S phase current in PF error	Unit: 0.1A
0x00B1	Phase T current at PF	16 Bit	T phase current in PF error	Unit: 0.1A
0x00B2	oC failure occurrences	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x00B3	Bus voltage at oC	16 Bit	DC bus voltage at oC error	Unit: 0.1V
0x00B4	R phase voltage at oC	16 Bit	R phase voltage at oC error	Unit: 0.1VAC
0x00B5	S phase voltage at oC	16 Bit	S phase voltage at oC error	Unit: 0.1VAC
0x00B6	T-phase voltage at oC	16 Bit	T-phase voltage at oC error	Unit: 0.1VAC
0x00B7	R phase current at oC	16 Bit	R phase current at oC error	Unit: 0.1A
0x00B8	S phase current	16 Bit	S phase current at oC error	Unit: 0.1A

	at oC			
0x00B9	Phase T current at oC	16 Bit	Phase T current at oC error	Unit: 0.1A
0x00BA	oL failure occurrences	16 Bit	Number of failures, 0 to 99 cycles display	Unit: 1
0x00BB	Bus voltage at oL	16 Bit	DC bus voltage at oL error	Unit: 0.1V
0x00BC	R phase voltage at oL	16 Bit	R-phase voltage at oL error	Unit: 0.1VAC
0x00BD	S phase voltage at oL	16 Bit	S phase voltage at oL error	Unit: 0.1VAC
0x00BE	T-phase voltage at OI	16 Bit	T-phase voltage at oL error	Unit: 0.1VAC
0x00BF	R phase current at oL	16 Bit	R phase current at oL error	Unit: 0.1A
0x00C0	S phase current at oL	16 Bit	S phase current at oL fault	Unit: 0.1A
0x00C1	T phase current at oL	16 Bit	T-phase current at oL fault	Unit: 0.1A
0x00C2	Reserved	16 Bit	Reserved	Reserved
	Reserved	16 Bit	Reserved	Reserved
0x00C8	Reserved	16 Bit	Reserved	Reserved
The above	e registers are read-only	y registers		
The follow	ing registers are read a	and write re	gisters	
0x00C9	Sensor T1	16 Bit	If the value of the T1	Range 550 ~ 950,
0x00C9		16 Bit	If the value of the T1 temperature sensor is	Range 550 ~ 950, Unit: 0.1 °C
0x00C9	Sensor T1	16 Bit		
0x00C9	Sensor T1 oH1 overheat	16 Bit	temperature sensor is	
0x00C9	Sensor T1 oH1 overheat protection	16 Bit	temperature sensor is higher than this setting,	
0x00C9 0x00CA	Sensor T1 oH1 overheat protection	16 Bit 16 Bit	temperature sensor is higher than this setting, jump oH1 overheat	Unit: 0.1 °C Range 550 ~ 950,
	Sensor T1 oH1 overheat protection temperature Sensor T2 oH2 overheat		temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is	Unit: 0.1 °C
	Sensor T1 oH1 overheat protection temperature Sensor T2 oH2 overheat protection		temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting,	Unit: 0.1 °C Range 550 ~ 950,
	Sensor T1 oH1 overheat protection temperature Sensor T2 oH2 overheat		temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat	Unit: 0.1 °C Range 550 ~ 950,
0x00CA	Sensor T1 oH1 overheat protection temperature Sensor T2 oH2 overheat protection temperature	16 Bit	temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat protection	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C
	Sensor T1 oH1 overheat protection temperature Sensor T2 oH2 overheat protection temperature oH1 overheat		temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat protection After the oH1 error is	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C Range 2 to 3600,
0x00CA	Sensor T1 oH1 overheat protection temperature Sensor T2 oH2 overheat protection temperature oH1 overheat protection recovery	16 Bit	temperature sensor ishigher than this setting,jump oH1 overheatprotectionIf the value of the T2temperature sensor ishigher than this setting,jump oH2 overheatprotectionAfter the oH1 error iseliminated and the set	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C
0x00CA	Sensor T1 oH1 overheat protection temperature Sensor T2 oH2 overheat protection temperature oH1 overheat	16 Bit	temperature sensor ishigher than this setting,jump oH1 overheatprotectionIf the value of the T2temperature sensor ishigher than this setting,jump oH2 overheatprotectionAfter the oH1 error iseliminated and the setvalue is delayed, the	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C Range 2 to 3600,
0x00CA 0x00CB	Sensor T1 oH1 overheat protection temperature Sensor T2 oH2 overheat protection temperature oH1 overheat protection recovery time	16 Bit 16 Bit	temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat protection After the oH1 error is eliminated and the set value is delayed, the protection is restored.	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C Range 2 to 3600, Unit: S
0x00CA	Sensor T1 oH1 overheat protection temperatureSensor T2 oH2 overheat protection temperatureoH1 overheat protection recovery timeoH2 overheat	16 Bit	 temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat protection After the oH1 error is eliminated and the set value is delayed, the protection is restored. After the oH2 fault is 	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C Range 2 to 3600, Unit: S Range 2 to 3600,
0x00CA 0x00CB	Sensor T1 oH1 overheat protection temperatureSensor T2 oH2 overheat protection temperatureoH1 overheat protection recovery timeoH2 overheat protection recovery time	16 Bit 16 Bit	 temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat protection After the oH1 error is eliminated and the set value is delayed, the protection is restored. After the oH2 fault is eliminated and the set 	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C Range 2 to 3600, Unit: S
0x00CA 0x00CB	Sensor T1 oH1 overheat protection temperatureSensor T2 oH2 overheat protection temperatureoH1 overheat protection recovery timeoH2 overheat	16 Bit 16 Bit	 temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat protection After the oH1 error is eliminated and the set value is delayed, the protection is restored. After the oH2 fault is eliminated and the set value is delayed, the 	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C Range 2 to 3600, Unit: S Range 2 to 3600,
0x00CA 0x00CB	Sensor T1 oH1 overheat protection temperatureSensor T2 oH2 overheat protection temperatureoH1 overheat protection recovery timeoH2 overheat protection recovery time	16 Bit 16 Bit	 temperature sensor is higher than this setting, jump oH1 overheat protection If the value of the T2 temperature sensor is higher than this setting, jump oH2 overheat protection After the oH1 error is eliminated and the set value is delayed, the protection is restored. After the oH2 fault is eliminated and the set 	Unit: 0.1 °C Range 550 ~ 950, Unit: 0.1 °C Range 2 to 3600, Unit: S Range 2 to 3600,

0x00CE	EXT external fault	16 Bit	After the EXT external	Range 2 to 3600, unit: S
	recovery time		error is eliminated, the	
			recovery time is delayed,	
			and the software	
			automatically recovers.	
Address	Function description	Bit	Description	Note
		descripti		
		on		
0x00CF	TA/TB/TC	16 Bit	Specific control mode	Range 0 to 24, unit: 1
	Relay control mode		reference chart 5-9	
0x00D0	T1A/T1B/T1C	16 Bit	Specific control mode	Range 0 to 24, unit: 1
	Relay control mode		reference chart 5-9	
0x00D1	DC bus	16 Bit	Set the DC bus threshold	Range 1800 ~ 12000,
	Threshold voltage		voltage to control the	Unit: 0.1V
			TA/TB/TC relay. Refer to	
0x00D2	DC bus	16 Bit	chart 5-9. Set the DC bus threshold	Range 1800 ~ 12000,
000002	Threshold voltage 1		voltage to control the	Unit: 0.1V
			T1A/T1B/T1C relay.	
			Refer to chart 5-9.	
0x00D3	TA/TB/TC relay	16 Bit	Set the timing time for	Range 1 to 17280,
	Timing		controlling the TA/TB/TC	Unit: min
			relay. Refer to chart 5-9.	
0x00D4	T1A/T1B/T1C	16 Bit	Set the timing time for	Range 1 to 17280,
	Relay timing time 1		controlling the	Unit: min
			T1A/T1B/T1C relay.	
			Refer to Chart 5-9.	D
0x00D5	TA/TB/TC relay	16 Bit	Used to control	Range 0 to 240,
	On time		TA/TB/TC relays, refer to Chart 5-9	Unit: S
0x00D6	T1A/T1B/T1C	16 Bit	Used to control	Range 0 to 240,
UNUUDU	Relay conduction		T1A/T1B/T1C relays,	Unit: S
	time 1		refer to Chart 5-9	
0x00D7	TA/TB/TC relay	16 Bit	Used to control	Range 0 to 240,
	Turn off time		TA/TB/TC relays, refer to	Unit: S
			Table 5-9	
0x00D8	T1A/T1B/T1C	16 Bit	Used to control	Range 0 to 240,
	Relay off time 1		T1A/T1B/T1C relays,	Unit: S
0.0050		40.5%	refer to Chart 5-9	
0x00D9	DC bus voltage	16 Bit	Enter the required	The range is 2000~12000,
	automatic correction		correction value, and the software will	Unit: 0.1V
			automatically correct	
			after 3 seconds. (The	
			correction step is within	e
			$\pm 50V$. If it exceeds \pm	

			50V, please correct it multiple times.)	
0x00DA	Charging contactor open voltage threshold	16 Bit	After the DC bus voltage is less than the set value, the charging contactor will open.	Modify the scope reference manual, Unit: 0.1V
0x00DB	Charging contactor pull-in voltage threshold	16 Bit	After the bus voltage is higher than the set value and delays the value of 0x00DE, the charging contactor pulls in	Modify the scope reference manual, Unit: 0.1V
0x00DC	DC bus voltage oE overvoltage protection threshold	16 Bit	After the DC bus voltage is higher than the set value, the oE overvoltage protection error is reported.	Modify the scope reference manual, Unit: 0.1V
0x00DD	DC bus voltage LE undervoltage protection threshold	16 Bit	After the DC bus voltage is less than the set value, the LE undervoltage protection fault is reported.	Modify the scope reference manual, Unit: 0.1V
0x00DE	Charging contactor pull-in delay time	16 Bit	The charging contactor reaches the pull-in condition, and after the set time is delayed, the pull-in is completed.	Range 2 to 240, Unit: S
0x00DF	oE overvoltage protection recovery time	16 Bit	The protection is restored after the DC bus voltage is less than (0x00DC item - 20) and the set value is delayed.	Range 2 to 3600, Unit: S
0x00E0	LE undervoltage protection recovery time	16 Bit	After the DC bus voltage is greater than the 0x00DB parameter and the set value is delayed, the protection is restored.	Range 2 to 3600, Unit: S

0x00E1	HE hardware Overvoltage protection recovery time	16 Bit	When the bus voltage is less than (0x00DC item - 20) and the value is delayed, the hardware overvoltage protection is restored. Hardware overvoltage: 505V for 220VAC, 840V for 380VAC, and 1240V for 660VAC	Range 2 to 3600, Unit: S
0x00E2	RS485 communication address	16 Bit	Machine address set during RS485 communication	Machine address range: 0 to 31, Unit: 1
Address	Function description	Bit descripti on	Description	Note
0x00E3	Phase sequence correction of power supply three-phase power grid	16 Bit	When the set value is 6, the zero offset correction is entered. After 3 seconds, when the read changes from 6 to 1, the calibration is completed.	Range 0 to 6, Unit: 1
0x00E4	Phase	16 Bit	0 correction failed 1 correction	Range 0 to 6,
	sequence correction of power supply three-phase power grid		succeeded 6 entered calibration, calibration failure lasted for more than 3 seconds for the grid no power	Unit: 1
0x00E5	Three-phase grid RMS Automatic voltage correction	16 Bit	Enter the correction value, and complete the automatic calibration after 3 seconds. The input is invalid during the calibration (the correction step is within ±50V, and the correction is more than ±50V)	Range 500 to 9000, Unit: 0.1VAC
0x00E6	FF three-phase grid frequency Fault protection recovery time	16 Bit	After the three-phase grid over/under frequency error is eliminated and the set value is delayed, the protection is restored.	Range 2 to 3600, Unit: S

0x00E7	UF three-phase	16 Bit	Protection of the	Range 2 to 3600,
	power grid amplitude Fault protection		three-phase grid phase voltage amplitude over/undervoltage fault	Unit: S
	recovery time		and delay after the set value	
0x00E8	Three-phase grid phase voltage amplitude overvoltage protection set value	16 Bit	If the amplitude of the three-phase power grid is greater than the set value, the UF protection fault is reported.	Refer to Chart 5-9 for the scope. Unit: 0.1VAC
0x00E9	Three-phase grid phase voltage amplitude undervoltage protection set value	16 Bit	If the amplitude of the three-phase power grid is less than the set value, the UF protection fault is reported.	Refer to chart 5-9 for the scope. Unit: 0.1VAC
0x00EA	PF grid abnormality or phase loss fault protection recovery time	16 Bit	After the phase failure of the three-phase power grid or the phase loss fault is eliminated and the set value is delayed, the protection is restored.	Range 2 to 3600, Unit: S
0x00EB	oC overcurrent protection Recovery Time	16 Bit	After the three-phase overcurrent protection error is eliminated and the set value is delayed, the protection is restored.	Range 2 to 3600, Unit: S
0x00EC	Overload protection starting point	16 Bit	This is the percentage of the maximum current that the machine is running. If this value is exceeded, the overload protection time is calculated.	Range 75 to 95, Unit: 0.01
0x00ED	Maximum running current of the machine corresponds to overload protection time	16 Bit	This setting is the maximum current corresponding to the overload protection time of the machine. Refer to chart 5-9 for the calculation formula.	Range 1 to 50, Unit: 0.1S

oL overload	16 Bit	After the three-phase	Range 2 to 3600,
protection		current overload	Unit: S
Recovery Time		protection fault is	
		eliminated and the set	
		value is delaved, the	
		-	
Rectified feedback	16 Bit	-	Refer to Table 5-9 for the scope of
			modification.
-			Unit: 0.1V
r couback voltage			
Three_phase	16 Bit	· ·	Refer to chart 5-9 for the scope.
-	TO DIL		Unit: 0.1VAC
		voitage within ±10%	
-			
	16 Bit		Refer to chart 5-9, unit: 0.1 °C
temperature			
	40.5%		
	16 Bit		Range 0 to 1,
delay output enable		enable delay output	Unit: 1
Three-phase	16 Bit	When the delay output is	Range 1 to 18000, unit: 0.1S
-			
		•	
Reserved	16 Bit		Reserved
Reserved	16 Bit	Reserved	Reserved
	protection Recovery TimeRectified feedback voltage / Feedback voltageThree-phase emergency power supply output voltageFan operation temperatureEmergency power delay output enableThree-phase emergency power delay output enableThree-phase emergency power delay output enableReserved	protection Recovery TimeImage: Constant of the second sec	protection Recovery Timecurrent overload protection fault is eliminated and the set value is delayed, the protection is restored.Rectified feedback voltage / Feedback voltage16 BitWhen the DC bus voltage is higher than this value, feedback starts. Below this value, the rectification work/feedback stops.Three-phase emergency power supply output voltage16 BitControl emergency power supply output voltage within ±10%Fan operation temperature16 BitSpecific fan control mode reference chart 5-9Emergency power delay output enable16 Bit0 is not enabled; 1 is enable delay output is enabled, this is set to the time of the three-phase emergency power supply delay output.Reserved16 BitReserved

Chart 5-19 Data Register Descriptions Defined by the Control Board

5.3.11 Notes on Reading and Writing Applications

When applying RS485 communication, you need to pay attention to the following five tips:

1. The defined data registers are read-only registers from 0x0000 address to 0x00C8 address, and the remaining registers are readable and writable registers.

2. DI1/COM is the enable control port: short enable; disconnect stop. This port can be used for remote control.

3. When it is necessary to modify the data register from 0x00C9 address to 0x012C address through RS485 communication, DI1/COM needs to be disconnected to be modified.

4. When a single machine communicates via RS485, the J4 interface on the control board is set to ROFF (the default corresponding two pin pins are not connected); when multiple machines communicate via RS485 network, the J4 interface on the control board needs to be set. For RON (set the corresponding two pins shorted).

5. Since the maximum number of writes of the EEPROM memory used by the control board is 1 million times, please do not modify RS485 communication from 0x00C9 address to 0x012C address frequently.

5.3.12 Reading and Writing Application Examples

 1_{\sim} The 0x06 instruction reads a number of consecutive addresses (up to 16, at least 1) of registers.

2 Read three consecutive registers starting at address 0x0000

Command information:

	Slave address	function code	Register address		Read word count		CRC check	
			High byte	Low byte	High byte	Low byte	High byte	Low byte
Hexadecimal data	1F	06	00	00	00	03	CA	75

Response information:

	Slave addr ess	func tion code	Respons e data bytes	J. J		Register contents		CRC Check	
				High	Low	High	Low	High	Low
				byte	byte	byte	byte	byte	byte
Hexadecimal data	1F	06	06	00	09			BC	EB
The first register content: 0x0009 = 0000 0000 0000 1001, look up Table 5-18 means: there is a fault, the external input fault of the terminal EXT									

3、The 0x16 instruction writes a single register

4、Write the register of the 0x00C9 address

Command information:

Slave address	function code	e la		Contents for Register address		CRC check	
		High byte	Low byte	High byte	Low byte	High byte	Low byte

Hexadecimal	15	16	00	C9	03	20	9A	A1
data								

Response message:

	Slave address	function code			Contents for Register address		CRC Check	
			High byte	Low byte	High byte	Low byte	High byte	Low byte
Hexadecimal data	1F	16	00	C9	03	20	9A	A1
Register conte protection tem			800, check	Chart 5-18	means: se	t the senso	r T1's oH1 o	overheat

Chapter 6 Troubleshooting

6.1 Keyboard Control Error Code

In normal working conditions, when the software detects an abnormality, it will automatically stop the output, and switch to the error display state, and display the current abnormal error type on the keyboard. The meaning of each error code displayed is as follows:

Display code	Error conditions	Error Meaning
oH1	Temperature sensor T1 overheated	Temperature sensor T1 overheated
oH2	Temperature sensor T2 overheated	Temperature sensor T2 overheated
EF	EXT terminal input failure	EXT terminal input failure on the control board
oE	Over Voltage	DC bus voltage is too high
LE	Low Voltage	DC bus voltage is too low
HE	Hardware overvoltage	The hardware detects that the DC bus voltage is too high
FF	Grid frequency anomaly	Disconnected from the AC grid or abnormal power supply frequency AC grid voltage amplitude is abnormal AC grid missing phase or AC grid power supply abnormality

UF	Grid amplitude anomaly	
PF	Grid phase loss or grid power supply anomaly	
oC	Overcurrent	Three-phase current output overcurrent
oL	Overload	Three-phase current output overcurrent

Chart 6-1 Control board fault code chart

When an Error occurs, the software automatically stops the output and shows the type of fault on the keyboard all the time. When the fault is eliminated, the software will automatically restore to its normal working state after a certain recovery time (the default setting of the software is 30S, the recovery time can be modified, refer to the section "Setting up the recovery time of the fault protection"). Whether in the normal working state or in the fault state, you can view the fault record through the keyboard, please refer to Table 5-10 for details.

6.2 Cause Analysis and Removal of Common Faults

Common malfunctions	Cause analysis and troubleshooting		
Rectifier feedback or feedback does not	Check that the wiring is correct;		
work	Check if the control mode configured by the control terminal is correct;		
	Check if the selected device matches the field operating voltage;		
	Check if the external power grid is normal;		
	Detect if there is any device damage;		
	Detecting the type of error reported by the keyboard;		
Three-phase emergency power supply has	Check that the wiring is correct;		
no output	Check if the control mode configured by the control terminal is correct;		
	Check if the selected device matches the field operating voltage;		
	Check if the external power grid is normal;		
	Detect if there is any device damage;		
	Detecting the type of error reported by the keyboard;		
Inverter overvoltage protection during	Check if the selected device capacity is sufficient;		
feedback	Check whether the feedback action voltage of the device matches		
	the inverter;		
	Detecting whether the device is damaged;		
	Check if the feedback work or not		

Device overheat protection	The selected device capacity is too small, please re-calculate the		
	selection; The installation place of the device is not well ventilated, so that the		
	heat generated during work cannot be dissipated;		
	Whether the value of the overheat protection temperature set by		
	the detecting device is too small;		
Device overload protection	The selected device capacity is too small, please re-calculate the		
	selection;		
	Check if the overload time curve is set correctly;		
The device reports the abnormal error	Check if the air switch between the device and the grid is normal;		
protection of the power grid	Check if the wiring of the three-phase power grid is correct;		

Check if the control mode configured by the control terminal is correct;

Chart 6-2 Causes and troubleshooting of common errors

Chapter 7 Maintenance and Inspection

To prevent accidents in the future and to maintain the high reliability of the device for a long time, daily and periodic inspection should be carried out in order. Please pay attention to the following items when testing operation.

7.1 Routine inspection

Do not remove cover plate parts during machine operation or under electrical condition. Visually check the operation status from outside. Usually the following items are inspected:

- Whether the expected performance be achieved (in accordance with standard specifications);
- Whether the surrounding environment meets the standard specifications;
- Are there any abnormal sounds, vibration and odour?
- Are there any signs of overheating or color change etc abnormal phenomena?;
- Whether the keyboard indicator or data display is normal;
- Check whether the heat dissipation of the machine is normal.

7.2 Regular inspection

Regular inspection should be carried out after the operation is stopped, the power supply is disconnected, and the cabinet door is opened. Even if the power supply is disconnected, the DC part of the main circuit still has electricity stored in the electrolytic capacitor. Discharge takes a certain time. At this time, there is still a high voltage danger. It should wait more than 10 minutes, or check the operation after confirming that the DC voltage has been reduced to the safe voltage value (below DC25V) with the multimeter and other measuring tools. Regular inspections are usually carried out according to the following terms:

The power supply should be disconnected and it will take 10 minutes to check the operation. A more reliable method is to measure the terminal DC voltage with a multimeter, confirm that it has been reduced to the safe voltage value (below DC 25V) and then check the operation, otherwise there is a risk of electric shock

- Maintenance, inspection and replacement of parts by professional electricians;
- Metal articles (watches, rings, etc.) should be removed before operation;

- Insulated tools should be used;
- > It is absolutely forbidden to retrofit this device, otherwise there will be the risk of accidents;
- > Detect whether the surrounding environment is conducive to heat dissipation of the machine and not be exposed to direct sunlight for a long time.

Check parts	Check item		Inspection Method	Judging criteria
surroundings	Check ambient temperature, humidity, vibration, air (with or without dust, corrosive gases, soot, water droplets, etc.)		Visual and inspection instrument measurements	Meet the requirements in the standard specification
			Visually check for other objects or dangerous objects such as tools placed around them.	Not placed
Voltage	Is the voltage of the main circuit and the control circuit normal?		Multimeter and other measurements	Meet standard specifications
Structural parts No abnorm such as frames abnormal v		ity sound and ration	Visual and auditory examination	No abnormality
	Whether the bolts		Tighten	No
	(fasteners) are loose			abnormality
damage, whethe discoloration du		re is deformation, ether there is due to overheating, e is any stain and dust	Visual inspection	No abnormality
The main circuit	General purpose	Whether the bolt parts are loose or loose	Tighten	No abnormality
1		Whether the device and the insulation are deformed, cracked, damaged, discolored by overheating, with or without dirt and dust	Visual inspection	No abnormality

	Conductor, wire	Whether there is discoloration or deformation due to overheating, whether the insulation layer of the wire is damaged, cracked or discolored	visual inspection	No abnormality
	Terminal block	With or without damage	visual inspection	No abnormality
	electrolysis capacitanc e	Whether there is leakage, discoloration, cracks, expansion of the casing, whether the safety valve is protruding, and whether the safety valve has obvious expansion	visual inspection	No abnormality
	resistor	Whether there is odor due to overheating and cracking of insulation	Olfactory, visual inspection	No abnormality
		With or without wire break	Visually inspect or remove the connection on one side, multimeter	±10% of the basic resistance value
			measurement	
Control circuit	Circuit board	Whether there are screws and connector parts loose, odor and discoloration,	Tighten Olfactory, visual inspection	Tighten, No abnormality
		cracking, damage, deformation, obvious rust, capacitor leakage or signs of deformation		
cooling system	cooling fan	No abnormality sound and abnormal vibration	Hearing and visual inspection, hand test rotation, power must be disconnected	Flexible rotation
		Whether the bolt parts are loose or not	Tighten	No abnormality

		Whether there is discoloration due to overheating	Visual inspection	No abnormality
	entilation ath	There are no radiators and suction and exhaust ports, and no other things attached.	Visual inspection	No abnormality
Note: The dirt can be wiped off with a cleaning tool such as chemically neutral cloth, and the dust can be removed				

with a vacuum cleaner.

Chart 7-1 Periodic inspection table

Chapter 8 Product Consulting and Quality Assurance

8.1 Requirements for consultation

When you need consultation, you should provide the following information to your agent or Nietz Electric Co.,Ltd

- Product Model;
- Product Serial Number;
- Date of purchase;

Contents you want to ask (e.g. warranty time limit, damaged location, damaged degree, doubtful items, failure phenomena, application situation and operation status, etc.).

8.2 Product Quality Assurance

The quality of products is guaranteed in three ways (returnable within one month, replaceable within three months, and free maintenance within 18 months), and paid maintenance service for whole life. If there is any problem with the NZR products you are using, please contact our company or the corresponding supplier in time. However, even during the warranty period, paid repairs are carried out in the following cases.

- Bilingual Contrast of Error Reporting;
- Unauthorized disassembly, assembly and transformation;
- Improper usage or beyond the scope of use;
- Damage or break down during falling or transportation (customer reason);

Problems caused by force majeure such as earthquakes, fires, storms, lightning disasters, voltage anomalies and other natural disasters, as well as secondary disasters;

Failure problems caused by other reasons not from our company liability

The NZR sine wave energy feedback device of our company meets the relevant national standards up to the date of compilation of this specification, but we need to remind customers of the changing local laws and regulations to ensure the rational use of the NZR sine wave energy feedback device. Free maintenance service is limited to our production workshop, the company does not provide free on-site maintenance services.